УДК 539.1.074

Г.В. БОКУЧАВА 1 , Г.С. КАРУМИДЗЕ 2 , Б. М. ШИРОКОВ 3

 1 Сухумский физико-технический институт им. И. Векуа, Грузия

²Национальный центр высоких технологий Грузии, Грузия

ВЫСОКОТЕМПЕРАТУРНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР

В статье рассматривается возможность создания эффективного высокотемпературного термоэлектрического генератора, на основе $^{11}B_4C$ (ветвь p-типа) и $Si_{0,7}Ge_{0,3}$ (ветвь n-типа). Измерены температурные зависимости параметров, определяющих термоэлектрическую эффективность Z материалов. Рабочая температура составляет $\geq 1000~K$; механическая, химическая и радиационная стойкость намного превышают аналогичные характеристики других термоэлектрических материалов.
Такие генераторы могут быть использованы на космических аппаратах в качестве автономных источников питания.

Ключевые слова: термоэлектрический генератор, карбид бора, SiGe, космические аппараты.

Введение

Разработка компактных и долговечных автономных источников электрической энергии, предназначенных для питания бортового оборудования космических аппаратов, траектории которых находятся как вблизи Земли, так и в дальнем космосе, в настоящее время остается одной из самых актуальных задач. Одними из самых перспективных автономных источников питания для работы в космосе являются термоэлектрические генераторы (ТЭГ), в которых термопреобразователи непосредственно сопряжены с компактным ядерным реактором, используемым в качестве источника тепла.

Однако, полупроводниковые материалы, пригодные для создания термоэлектрогенераторов, эксплуатирующихся при температурах больше 900 К с высокой термоэлектрической эффективностью, находятся только в стадии разработки. Как известно, термоэлектрическая эффективность Z выражается формулой:

$$Z = \frac{S^2 \cdot \sigma}{\chi} \,, \tag{1}$$

где S – коэффициент Зеебека;

σ – удельная электропроводность;

у – коэффициент теплопроводности.

Следовательно, разрабатываемый материал должен обладать определенным сочетанием параметров, обеспечивающих максимум Z. Кроме того, материал также должен обладать высокой механической, химической и радиационной стойкостью. Эти требования вытекают из сложных условий теп-

ловыделения ТЭГ-ов, а также из того факта, что их работа протекает в условиях радиационного облучения. Особенно актуальны эти требования тогда, когда необходимо создавать источники энергии мощностью ≥ 5 кВт.

Установлено, что карбид бора (B_4C) — перспективный высокотемпературный термоэлектрический материал [1]. B_4C имеет электронную структуру с недостатком электронов и формируется как полупроводник дырочной проводимости с шириной запрещенной зоны $\Delta E = 1,29B$. Носители заряда в B_4C — биполяроны, и их концентрация достигает $\sim 10^{21}$ см $^{-3}$. Теплоперенос осуществляется фононами и сильно зависит от взаимного размещения атомов бора и углерода.

В [2] показано, что теплопроводность χ карбида бора изменяется при изменении входящего в него изотопного состава бора (рис. 1).

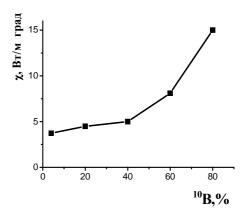


Рис. 1. Зависимость коэффициента теплопроводности B_4C от изотопного состава бора

³Национальный Научный Центр «Харьковский физико-технический институт», Украина

В частности, повышение содержания В-11 в B_4C с 80 до 98 % вызывает уменьшение χ примерно на 20 %, что благоприятствует повышению Z. Было также установлено, что при этом изменяется упругость, скорость звука и микротвердость [3, 4].

В работе [5] были выполнены исследования по определению термоэлектрических параметров (σ , S, χ) образцов ¹¹B₄C, с различным содержанием изотопа B-11 в зависимости от температуры (рис. 2).

Высокое содержание изотопа ¹¹В в образцах карбида бора обеспечивает их радиационную стойкость, поскольку изотоп ¹¹В имеет по сравнению с изотопом ¹⁰В ничтожно малое сечение захвата нейтронов. Это имеет существенное значение в случае применения в качестве источника тепла ядерного реактора.

В этой же работе было установлено, что при увеличении концентрации бора до состава $B_{6,5}C$ значение χ при температуре 1300 К понижается приблизительно в два раза по сравнению с составом B_4C .

Принимая во внимание высокую концентрацию носителей заряда ($\sim 10^{21} \text{ см}^{-3}$), фактически невозможно получить B_4C с электронной проводимостью, не ухудшая параметры, включенные в уравнение (1) [6].

В качестве материала с электронной проводимостью мы предлагаем сплав $Si_{0,7}Ge_{0,3}$ (с использованием фосфора в качестве легирующего материала). Этот сплав позволяет получить ветвь термоэлемента п-типа с эффективностью (КПД) Z, соответствующей эффективности B_4C при высокой температуре. Материал механически и химически устойчив при высоких температурах ($\geq 1300~K$) и имеет хорошие значения параметров σ , χ , и S при высоких температурах (рис. 3). Кроме того, $Si_{0,7}Ge_{0,3}$ п-типа — радиационно-стойкий материал [7].

С целью определения термоэлектрической совместимости этих двух материалов был проведён расчёт и сравнение термоэлектрической эффективности сплава $\mathrm{Si}_{0.7}\mathrm{Ge}_{0.3}$ п-типа и карбида бора $\mathrm{B}_4\mathrm{C}$ и $\mathrm{B}_{6.5}\mathrm{C}$ р-типа разной плотности.

Известно, что значение эффективности Z_{max} для материалов с нормальной проводимостью (Si-Ge) может быть получено из следующего выражения [8]:

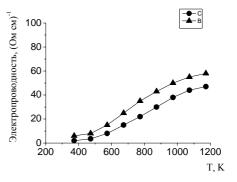
$$Z_{\text{max}} = \frac{8K^2 (2\pi m * KT)^{3/2}}{eh^3} \frac{u}{\chi p} e^r,$$
 (3)

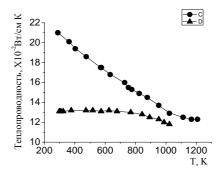
где т* – эффективная масса плотности состояний;

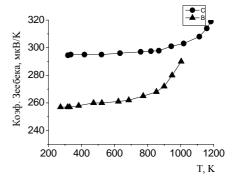
χ – теплопроводность кристаллической решетки;

Т – абсолютная температура;

μ – подвижность носителей заряда;

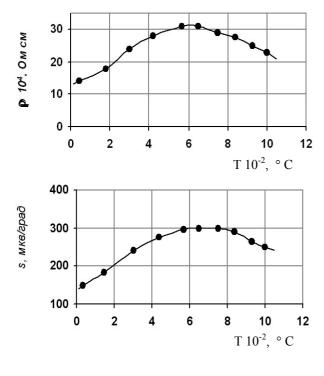

r – характеристика механизма рассеяния.


Для расчета Z_{max} материалов с нестандартной удельной электропроводностью, к которым принадлежит B_4C , было получено следующее уравнение [9]:


$$Z_{\text{max}} = \frac{\chi^2 U}{eh^3} N \cdot u , \qquad (4)$$

где N – номер локального состояния места расположения носителей заряда.

Показано, что максимальная эффективность сплава $\mathrm{Si}_{0,7}\mathrm{Ge}_{0,3}$ достигается при температуре $1000-1050~\mathrm{K}$ (рис. 4). В то же время максимум эффективности для карбидов бора $\mathrm{B_4C}$ и $\mathrm{B}_{6,5}\mathrm{C}$ лежит при температурах >1300 K. Наиболее оптимальным по совместимости с $\mathrm{Si}_{0,7}\mathrm{Ge}_{0,3}$ п-типа по Z является образец карбида бора (р-типа), изготовленный на основе



•
$$-B_4C$$
, $\gamma=2,19 \text{ r/cm}^3$, ($^{10}B 86 \%$, $^{11}B 14 \%$),
• $-B_4C$, $\gamma=2,16 \text{ r/cm}^3$, ($^{10}B 98 \%$, $^{11}B 2 \%$)

Рис. 2. Температурные зависимости S(T), $\sigma(T)$ и $\chi(T)$ для B_4C с разной плотностью и различным содержанием изотопа B-11

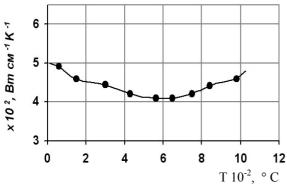


Рис. 3. Зависимости S(T), $\rho(T)$ и $\chi(T)$ для $Si_{0,7}Ge_{0,3}$

В-11 и с большим содержанием бора, т.е. B_xC , где $x \ge 6,5$. Анализ термомеханической совместимости показал, что различие к.т.р. сплава $Si_{0,7}Ge_{0,3}$ и карбида бора не является критическим для конструирования термоэлементов на их основе. Следовательно, термоэлектрические материалы из сплава $Si_{0,7}Ge_{0,3}$ и $B_{6,5}C$ ($^{11}B98\% + ^{10}B2\%$), полученные методом горячего прессования, термоэлектрически и теплофизически удовлетворительно согласованы друг с другом.

Исходя из выше изложенного, предложена другая конструкция термоэлемента с ядерным реактором в качестве источника тепла (рис. 5).

В этой схеме высокотемпературная ветвь, представляющая собой термостолбик из $^{11}{\rm B}_{6,5}{\rm C}$ (материал р-типа), работает в интервале температур 1000-1350 K, а низкотемпературная, состоящая из ${\rm Si}_{0,7}{\rm Ge}_{0,3}$ (материал n-типа) – в интервале температур

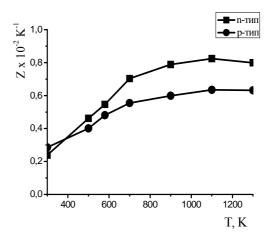


Рис. 4. Зависимость термоэлектрической эффективности (КПД) Z твердых сплавов $Si_{0,7}Ge_{0,3}$ n- и p-типа от температуры

800-1000 К. Высокотемпературный сегмент прижимается одним концом непосредственно к источнику тепла, а вторым концом подсоединен посредством коммутационного узла к низкотемпературному сегменту, через который и происходит сброс тепла.

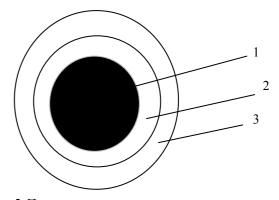


Рис. 5. Принципиальная схема высокотемпературного термоэлектрического генератора. 1 – активная зона реактора; 2 – ветвь р-типа из $^{11}{\rm B}_4{\rm C}$; 3 – ветвь $\,$ п-типа из ${\rm Si}_{0,7}\,{\rm Ge}_{0,3}$

Необходимо отметить, что ветвь из карбида бора расположена близко к источнику тепла; Si-Ge n-типа более удален и находится в более мягких радиационных условиях.

Была произведена оценка к.п.д. такого термо-элемента при T_Γ =1500 K, T_X =800 K и T_0 = 1000 K без учёта коммутационных потерь. Она дала для р-ветви значение $\sim 1,8$ %, для п-ветви $-\sim 2,7$ %. В сумме в интервале температур 800-1500 K к.п.д. всей системы достигает $\sim 4,5$ %.

Таким образом, создание на основе материалов $Si_{0,7}Ge_{0,3}$ и $B_{6,5}C$ с повышенным содержанием изотопа B-11 высокотемпературного радиационностойкого эффективного термоэлектрического генератора

для эксплуатации в среде потока нейтронов – вполне реальная и выполнимая задача.

Литература

- 1. Wood Ch. Borides and Related Compounds / Ch. Wood // Proceedings of the International Symposium on Boron. Duisburg, 1987. Vol.3. P. 236-248.
- 2. Karumidze G. Azlactones derived from substituted / G. Karumidze, L. Kekelidze, L. Shengelia // American Institute of Physics. 1996. Vol. B124. P. 1063-1086.
- 3. Pat. 60384 Georgia, MKI H01J 035/06. The Method of Boron Carbide Production / Karumidze G. et.al. Pap. 30.09.99. P. 2515-2539.
- 4. Karumidze G. Structure end properties of refractory compounds deposited by electron beam evaporation / G. Karumidze et al. // Физика и техника полупроводников. 1996. Vol.12, No 28. P. 110-115.

- 5. Бокучава Г.В. Термоэлектрические свойства карбида бора, полученного различными методами / Г.В. Бокучава, Г.С. Карумидзе, А.Ф. Корж, Б.М. Широков и др. // Авиационно-космическая техника и технология. 2008. N 2 (49). C. 60-64.
- 6. Кислый П.П. Карбид бора / П.П. Кислый и др. К.: Наукова думка, 1988. – 152 с.
- 7. Slack G.A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators / G.A. Slack, M.A. Hussain // J. Appl. Phys. 1991. 70 (5). P. 2694-2718.
- 8. Иорданишвили Е.К. Термоэлектрические источники питания / Е.К. Иорданишвили. М.: Сов. радио, 1968. 224 с.
- 9. Голикова О.А. Методики измерения теплопроводности в полупроводниках при высоких температурах / О.А. Голикова и др. // Физика и техника полупроводников. — 1972. — Т.5, № 6. — С. 110-119.

Поступила в редакцию 27.05.2008

Рецензент: д-р физ.-мат. наук, ст. научн. сотр., нач. лаб. В.М. Хороших, Национальный научный центр «Харьковский физико-технический институт», Харьков.

ВИСОКОТЕМПЕРАТУРНИЙ ТЕРМОЕЛЕКТРИЧНИЙ ГЕНЕРАТОР

Г.В. Бокучава, Г.С. Карумідзе, Б.М. Широков

В статті розглядається можливість створення ефективного високотемпературного термоелектричного генератора, на основі $^{11}\mathrm{B_4C}$ (гілка р-типу) і $\mathrm{Si}_{0,7}\mathrm{Ge}_{0,3}$ (гілка п-типу). Виміряно температурні залежності параметрів, що визначають термоелектричну ефективність Z матеріалів. Робоча температура складає $\geq 1000~\mathrm{K}$; механічна, хімічна і радіаційна стійкість набагато перевищують аналогічні характеристики інших термоелектричних матеріалів. Такі генератори можуть бути використані на космічних апаратах у якості автономних джерел живлення.

Ключові слова: термоелектричний генератор, карбід бору, SiGe, космічні апарати.

HIGH-TEMPERATURE THERMOELECTRIC GENERATOR

G.V. Bokuchava, G.S. Karumidze, B.M. Shirokov

The opportunity of creation of the effective high-temperature thermoelectric generator, on the basis of $^{11}B_4C$ (a branch of p-type) and $Si_{0.70}Ge_{0.30}$ (a branch of n-type) is considered. Temperature dependences of the parameters determining thermoelectric efficiency Z of materials are measured. The working temperature is ≥ 1000 K; mechanical, chemical and radiating resistance much more exceed similar characteristics of other thermoelectric materials. Such generators can be used on space vehicles as independent power supplies.

Key words: thermoelectric generator, boron carbide, SiGe, space vehicles.

Бокучава Гурам Варламович — канд. техн. наук, начальник отдела Сухумского физикотехнического института им. И. Векуа, Тбилиси, Грузия, e-mail: sipt@sipt.org.

Карумидзе Гурам Семенович – д-р техн. наук, старший научный сотрудник, начальник лаборатории Национального центра высоких технологий Грузии, Тбилиси, Грузия.

Широков Борис Михайлович, канд. техн. наук, старший научный сотрудник, начальник отдела Национального Научного Центра «Харьковский Физико-технический Институт», Харьков, Украина, e-mail: Shirokov@kipt.kharkov.ua.