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This paper deals with an identification procedure of gas turbine nonlinear models for monitoring and diagnostic 
systems. Introduction of a special time variable into a conventional thermodynamic model helps to create a 
model of the engine with a variable deterioration level. To identify this model, registration data of great volume 
and different gas turbine deterioration severity can be attracted. This ensures high accuracy of the identified 
model as well as quality of a baseline function that can simply be extracted from the model. 
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Introduction 
 
Design of a gas turbine itself and its systems is 

deeply related with calculations on the base of gas path 

mathematical models of different complexity. A health 

monitoring system is an integral part of a modern gas 

turbine; it is applied not only for maintenance needs but 

for aims of gas turbine development ant tests as well. In 

such systems, nonlinear static gas path models, also 

called thermodynamic models, are widely used to 

simulate engine operation at steady states. This is 

explained by high cost of physical fault simulation, an 

infrequent display of the faults at real engines, and other 

causes. 

In thermodynamic models, gas path variables 

(pressures and temperatures of air or gas, rotor speeds, 

etc) are in relation with atmospheric conditions, engine 

control variables, and special internal parameters 

(correction factors). The latter parameters are able to 

displace performance maps of engine components 

(compressors, turbines, combustion chamber, etc) 

simulating their degradation by such a way.  

Last computer progress stimulates an application of 

sophisticated elements in monitoring systems, such as 

thermodynamic model identification procedure 

considered in this paper. Identification represents an 

effective technique of model accuracy enhancement. 

During the identification such correction factors are 

determined which minimize the distance between the 

model gas path variables and the measured ones. 

Besides the better model accuracy, the simplification of 

the diagnosing process is reached because the found 

estimations of the correction factors contain information 

of a current technical state of the components.  

The diagnostic algorithms based on the model 

identification constitute a separate approach in gas 

turbine diagnostics [1 – 7]. The researchers involve 

different mathematical methods, for instance, 

weighted-least-squares [6] and Kalman filter [7]. 

Aretakis et al. [5] proposed and use a combinatorial 

approach in order to get the estimations when input 

information is limited. When the researchers have in 

their disposal the data registered through a prolonged 

period, they usually calculate successive estimations 

and analyze them in time [3, 8].  

In paper [9], we proposed a gas path polynomial 

model that takes gradual engine performance 

degradation in consideration. That model has an 

additional argument, time variable, and can be identified 

on registered data of great volume. If we put the time 

variable equal to zero, the model will be transformed 

into a good baseline function for diagnostic algorithms.  

In the present paper, this idea is developed in 
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application to the thermodynamic model. Two purposes 

are achieved by such model identification. The first 

purpose consists in creating the model of a gradually 

degraded engine while the second is to have a baseline 

function of high accuracy. The idea is verified on 

maintenance data of a stationary gas turbine power plant.  

 
1. General Thermodynamic Model 

Identification Procedure 
 

A diagnostic process generally includes a stage of 

computing deviations  
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between a measured gas path variable *Y  and a 

baseline function )(0

UY  of a healthy engine. The 

function arguments are united in a vector U


 of 

operating conditions (atmospheric conditions and 

engine control variables).  

The deviations Y  are practically free of an 

influence of operating conditions and may serve as good 

degradation indicators. However, a lot of negative 

factors affect the deviation accuracy masking the 

degradation effect. The most of them are related with 

the function )(0 UY


. 

It is known that the gas turbine power and climatic 

curves are smooth. As shown in paper [10], these curves 

can be well described by a second order full polynomial 

of four arguments 
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Consequently, this polynomial is a good baseline 

function.  

Paper [10] also proves that the thermodynamic 

model can be used as an engine baseline function. 

According to the previous explanations, this model has 

a structure  
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and relates the gas path variables Y


 with the operating 

conditions U


 and corrections factors 


. The model (3) 

is computed as a solution of the system of algebraic 

equations reflecting the conditions of the components 

combined work at steady-state regimes.  

Every factor   is defined as a relative change  
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of an actual component performance map parameter   

(corrected flow parameter or efficiency parameter of an 

analyzed component) from its nominal value 0 . If 

vector 0


 of fixed correction factors corresponds to a 

healthy engine, the baseline can be presented by an 

expression  
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The measured values *
0Y


 of a healthy engine differ 

from the model-generated values 0Y


 due to the model 

errors 


 and the measurement errors *


, therefore 
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reduce considerably its errors 
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 in despite of the 

measurement errors of the data used. Such estimations  
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between model values and measured values:  
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Accuracy of an identified baseline model  

),( 00 


UFY                            (7) 

depends on a volume of a learning sample with the 

measured values used for the identification. For better 

identification accuracy, the learning sample generally 
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incorporate measurements from different engine 

operating points (operating modes).  

The learning sample problem seems to be 

challenging. On the one hand, the learning sample must 

be representative and incorporate the data collected in 

all passable operation regimes and at different ambient 

conditions. On the other hand, maintenance conditions 

do not permit arbitrary changes of an engine operating 

mode. Moreover, a data collection period is limited by a 

short time when a gas turbine state can be considered as 

healthy and invariable.  

To overcome the mentioned difficulties, we propose 

to introduce a time variable into the model (3) and 

identify such a model on all available maintenance data 

of variable engine degradation. The identified model 

will take into consideration a degradation effect. To get 

a baseline model, the time variable should be fixed. The 

next section describes details of this approach. 

 
2. Model Identification Details and Input 

Data Preparation 
 
The idea to introduce a time variable into the gas 

turbine model and identify such model was firstly 

verified in our papers [9, 10]. We proposed a new 

structure of the polynomial model 

2
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which is based on baseline function (2). The baseline 

)(0 UY


 obtained through identification of model (8) 

have demonstrated notable enhancement and was 

recommended for health monitoring systems [9].  

In these systems, the thermodynamic model is 

widely used as well. It has some advantages relatively 

polynomial model. First, model (3) is capable to 

simulate different faults and is used in many fault 

localization algorithms. Second, the model can evaluate 

some important engine performances inaccessible or 

difficult for direct measurement, such as an engine 

power and total efficiency. Third, model (3) is physics-

based and conserves after the identification its correct 

behavior in all operating conditions while the 

polynomial model is adequate only around the points of 

the learning sample. That is why the thermodynamic 

model with a time variable and the corresponding 

identification procedure are considered below. 

We attempted to introduce the time corrections into 

the thermodynamic model variables according to 

formula (8) however the identification procedure was 

not stable. Moreover, this mode is not too physical. 

Every gas path variable is adjusted independently while 

real engine degradation changes the variables in certain 

proportion.  

The next attempt, when we introduced the time 

variable into component performance description, was 

successful.  

It follows from (3) that  
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in the original identification procedure while, in the 

modified procedure, a new performance description  
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is applied, where t  is a relative time. This expression 

corresponds to a linear influence of an engine operation 

time on degradation severity.  

To identify the thermodynamic model with the time 

variable introduced according to formula (10), 

maintenance registration of a power plant with a free 

turbine is used. The registration covers the periods of 

axial compressor fouling, subsequent cleaning, and next 

fouling. These data present important information for 

the diagnostics because the fouling can be classified as 

one of the most frequent gas turbine faults. In the used 

database, gas path variables and operating conditions 

were registered within an hour interval.  

Two learning samples have been formed: sample 1 

of 3800 operating points (t = 3800 hours) and sample 2 

of the first 1800 points (t = 1800 hours). The latter 

sample is concerned because the fouling effect is 

practically linear here and the model with a linear 

degradation mechanism can be identified perfectly. The 

cleaning takes place after the time point t = 906. The 

power plant condition in this point is considered as 
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normal and the relative time t  is equal to zero. In the 

point t = 3800, the variable t  has its maximal value 

0.7235. In the interval before the cleaning, the relative 

time t  varies from 0,1165 to 0,3430 according to the 

fouling severity in this interval. 

Other identification conditions, equal for the both 

samples, are: number of the measured gas path variables 

is six; number of the estimated correction factors varies 

from 7 to 11 and table 1 specifies them. Three 

mechanical components (compressor, compressor 

turbine, and power turbine) are examined here and two 

parameters  , flow factor and efficiency factor, are 

generally introduced for every component (parameters 

from 3 through 8 in the table). Additional parameters 1 

and 2 are introduced to take into account different 

compressor performance shifts at low and high rotation 

speeds. Moreover, parameters 9-11 are included in order 

to simulate compressor deterioration according to 

expression (10). 

 
Table 1  

Correction factors used 

№ Desig-
nation Factor’s name 

1 GCn1 
Compressor corrected air flow (low 
speed) 

2 GCn2 
Compressor corrected air flow (high 
speed) 

3 GC Compressor corrected air flow 
4 ηC Compressor efficiency 
5 AT Turbine corrected gas flow 
6 ηT Turbine efficiency 
7 APT Power turbine corrected gas flow 
8 ηPT Power turbine efficiency 

9 πCt 
Compressor pressure ratio (time 
variable) 

10 GCt 
Compressor corrected air flow (time 
variable) 

11 ηCt Compressor efficiency (time variable) 
 

The next section describes the results of the 

thermodynamic model identification by the original and 

modified procedures.  

3. Results of the Model Identification  
on Maintenance Data 

 

The estimations 


 of correction factors for two 

procedures and two input data samples mentioned above 

are placed in table 2. It can be seen that the differences 

between the concerned cases are not too great for all 

factors. With respect to parameters πCt, GCt, and ηCt 

responsible for the degradation simulation, the have 

physically acceptable values. We can also add that the 

modified procedure had no difficulties to estimate 11 

correction factors while the original procedure was 

sometimes unstable in this case.  

To verify better the identification quality, deviations 

(1) between the learning sample data and the 

thermodynamic model are graphically analyzed below. 

Deviation plots are constructed for four cases: before 

the identification, after the identification by the original 

procedure, after the identification by the modified 

procedure when the time variable is switched off, and 

after the identification by the modified procedure when 

the variable is switched on. 

We will firstly analyze sample 1 (3800 time points) 

by the example of a high pressure turbine temperature. 

fig. 1 shows its deviations hptT  in the form of time 

plots for the mentioned four cases. The following can 

be stated after the plot analysis. 1) The trends 

provoked by the fouling and the cleaning-induced 

shifts are well distinguishable. The deviation quality 

(signal-to-noise ratio) is lower in the right part of the 

plots. Some causes of the disturbances - in particular, 

measurement latent defects that are not distinguishable 

by common filtration methods - have been determined 

in our papers [10, 11]. The factors that influence the 

engine but are not taken into account in the model yet - 

for example, air humidity – can also affect the 

deviations. 2) The modified procedure is not worse 

than the original one by the deviation quality (compare 

plots “b” and “c” of fig. 1). 3) The deviations 

computed relatively the model with time variable (see 
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plot “d”) should contain only random fluctuations if 

the model is adequate to registered data. However, it 

can be concluded that the deviation still contain 

remaining effects of the fouling and clearing. 

 

Table 2 

Estimations of the correction factors 

Procedure GCn1 GCn2 GC ηC AT ηT APT ηPT πCt GCt ηCt 

Original (samples 1,2) -.0971 -.0122 - .0714 .0293 -.0974 .0666 .0279 - - - 

Modified (sample 1)  -.0971 -.0122 .0281 .1056 .0146 -.1179 .0633 .0196 -.1262 -.0493 -.0487 

Modified (sample 2) -.0971 -.0122 .0407 .0973 .0333 -.1067 .0723 .0311 -.0765 -.1043 -.0658 
 
 

 
a 

 
b 

 
c 

 
d 

Fig. 1. High pressure turbine temperature deviations for Sample 1 
(a – before the identification; b – after the identification by the original procedure;  

c – after the identification by the modified procedure when the t-variable is switched off;  
d – after the identification by the modified procedure when the t-variable is switched on) 

 
 

The noted above difficulties of the proposed 

identification mode should be additionally analyzed. 

That is why we repeat the previous analysis for sample 

2 of 1800 time points. The corresponding deviation 
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plots hptT  are constructed in fig.2 for the same four 

cases as before. Comparing plots “c” and “b”, slight 

enhancement of the modified procedure relatively the 

original one can be noted. It can also be seen that the 

deviations of plot “d” are practically free of the fouling 

and clearing influence. 

fig. 3 shows the deviation plot hptP  for other 

measured variable, pressure behind the high pressure 

turbine. Comparing this figure with fig.2 we can 

conclude that the deviation disturbances and plot “d” 

fouling and clearing effects are slightly greater for the 

pressure variable than for the temperature variable. 

Summing up the analysis of the presented deviation 

plots as well as the analysis of the other monitored gas 

path variables, we can state that the presented mode of 

the thermodynamic model identification has 

demonstrated a slightly higher accuracy. It is also 

capable to determine greater number of the correction 

factors and additionally enhance the model in this way. 

The analysis has demonstrated as well that the 

investigation should be continued. 

 
Conclusions 

 
A new mode has been proposed of the 

thermodynamic model identification on great volume 

registered data with different gas turbine degradation 

severity. To take into account a variable fouling level, a 

time variable was introduced into compressor 

performance description.  

Comparison of the modified identification procedure 

with the original one was made by means of deviation 

time plots constructed for different data samples. The 

comparison has shown that the proposed identification 

mode has better properties. 

The obtained model taking into account variable gas 

path deterioration can be successfully applied in gas 

turbine monitoring, diagnostics, and prognostics. 

Moreover, this model can be simply converted into a 

baseline model of a high quality. Such a model can be 

widely used in monitoring systems as well. 

 
Fig. 2. High pressure turbine temperature deviations  

for Sample 2 (see in fig. 1 the explanations 
 for plots “a”, “b”, “c”, and “d”) 

 

 
Fig. 3. High pressure turbine pressure deviations  

for Sample 2 (see in fig.1 the explanations  
for plots “a”, “b”, “c”, and “d”) 
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This paper, however, can be considered only as the 

first attempt to identify the thermodynamic model on 

the data of different gas turbine degradation severity. 

We shall continue our investigations. 
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