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PERIODIC SOLUTION ANALYSIS OF A ROTOR-STATOR  

CONTACT NONLINEAR PROBLEM 
 

A typical problem encountered when studying turbo-machineries is studied: contact between a rotor and his sta-
tor. The contact is supposed to be permanent and frictionless. Nonlinear vibrations appear through the geometry 
of the problem when it is excited by an out-of-balance within the rotor. Equations are written in the rotating 
frame. The stability and bifurcation analysis of a particular equilibrium is carried on and exhibits two Hopf bi-
furcation points. The associated periodic solutions are constructed and followed, using a shooting method. A 
specific bifurcation diagram is then established. 
 
bifurcation, stability, shooting method, continuation, nonlinear 
 
1. Geometry, hypothesis and equations 
 
The problem parameters are given on fig. 1.   

 
Fig. 1. Model and notations 

Equations are written under the following assumptions:  

1. Frictionless and permanent contact between rotor 

and stator, which implies that cF


 and SR  are aligned 

and the constrain )sin(cos YXgsr ss


 .  

2. Gyroscopic effects can be neglected.  

Equations in the rotating frame YX


, assuming a 

viscous damping form, are:   
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The out-of-balance excitation is given by:  
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where ).()2()( ttft ee    

By collecting equations (1)  (4), the following 

augmented and autonomous system is defined to de-

scribe the problem:  
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2. Classical bifurcation diagram 
 
We first established a classical bifurcation diagram 

by sampling the system response with a frequency equal 
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to the excitation one. The time integration scheme is a 

Newmark one with constant acceleration approximation 

( )4/1,2/1  ). The algorithm can be found in [1]. 

The result is shown on fig. 2. This diagram exhibits a 

fixed point or a synchronous periodic solution and then 

shows a quasi-periodic or non-synchronous solution 

before coming back to an equilibrium or synchronous 

state. In order to describe the system behaviour in a 

more accurate way, we led a full analysis. 

 
Fig. 2. Classical bifurcation diagram 

 
3. Fixed point analysis 

 
We look for x  such that 0),( efxF : rotor and 

stator are fixed in the rotating frame. 

Equations (1)  (4) become simpler:  
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Putting the left-hand terms in a function, we can re-

write Eqn. (7)  (10) in a condensed way:  
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3.1. Continuation.  We used a tangent predictor 

scheme and a Moore-Penrose corrector. These methods 

are fully explained in [2, 3, 4] hence we only mention 

the main steps:  

Step 1 - Prediction: Having ),( ennn fxy  , estimate 

of the next point )0(
1ny  along the tangent vector nt :  
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h is the steplength. We kept it constant and equal to 1. 

Step 2 – Correction: The predicted point does not 

usually fulfil Eqn. (11) which is numerically checked 

through fpyH )( . 
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The equation used for the correction step is:  
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This continuation scheme applied on the excitation 

range Hz   fe ]196[ leads to fig. 3. 

 
Fig. 3. Fixed point continuation 

 

3.2.  Stability. Equations to be considered are the 

non-simplified Eqn. (1)  (4). Stability study is achieved 

with the help of the eigenvalues i  of the Jacobian 

matrix FDx . Stability criteria is all the real parts to be 
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negative. Figure 4 shows both real and imaginary parts 

of each six eigenvalues. This figure exhibit an unstable 

area [14.49  16.16] Hz that we will focus on. 

 
Fig. 4. Fixed point stability-Jacobian eigenvalues 
 
3.3.  Bifurcation analysis. This range provides two 

Hopf bifurcation points. In order to find out whether 

they are sub- or supercritical Hopf bifurcations, we 

compute the first Lyapunov number (see [3] for theory 

and computation steps). 

In the first case ( Hzfe 49,14 ), this number is 

positive. This means that the bifurcation is subcritical: it 

is a case of catastrophic bifurcation which requires a 

global analysis to be carried on. In the second case 

( Hzfe 69,16 ), the first Lyapunov number is nega-

tive: it is a supercritical Hopf bifurcation. 

 
4. Hopf bifurcation branches study 

 
4.1.  Branching. We aim to find for each bifurcation 

point a branch of points lying on limit cycles. A first 

order analysis of the evolution of a “small” perturbation 

)(ty  to the fixed point 0x  at the critical parameter 

value ebf  (14,49 Hz or 16,16 Hz) leads to: 

tt eVyeVyty 11 2211)(    for t  large enough, with 

21 VV  , eigenvectors associated to the pair of non zero 

imaginary eigenvalues 121  . It means that the 

predicted limit cycle for eebe fff   should be 

found by using an algorithm for periodic solution con-

struction initialized with 1/2 sT as the period guess 

and 1,)0( 10  Vxxini as a point on limit cycle.  

4.2.  Periodic continuation scheme. Once a point is 

caught, a continuation method can be used. First we 

build a continuous periodicity test function in order to 

solve the angular periodicity problem. Then, we present 

the general algorithm.  

4.2.1.  Angular periodicity test. We have to check 

the signal periodicity. A problem comes from the use of 

angles: physically 0s  and  2s  denote the 

same position whereas they are numerically different. 

The modulo function not being continuous enough, we 

decided to use the test function:  
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4.2.2. General periodic continuation algorithm. 
There are two main points: the prediction/correction 

scheme used to find periodic solutions and the step-

length adaptation scheme that saves computation time.  

Predictor/Corrector scheme: ),,( 0 esf fxTxx   

implies that with a small perturbation of the initial 

guess, the periodicity condition (14) becomes:  
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The first order development of Eqn. (15) gives:  
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We can use Eqn. (16) either for prediction or correc-

tion: 

 Prediction case: Assume that we possess 
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We need to add an equation or to delete an unknown 

component. We choose to force 0x  to be orthogonal to 

),( enfn fxF . Equations to be solved are then:  
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point nz  can be obtained by time integration of partial 

differential equations [2].  

 Correction case (shooting method):  )(i
nz  was 

evaluated and has to be corrected because 
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Equation (16) then provides:  
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The same missing equation than for the prediction 

step was chosen :  
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Steplength adaptation: Such a control scheme 

permits to save computation time by optimizing the 

parameter h  mentionned in Eqn. (18). h  value is 

adapted depending on the number of correction itera-

tions. If maxii   the prediction was not accurate 

enough. Correction step is interrupted and a new predic-

tion is made, using h/2. If correction test is achieved in a 

few iterations only, minii  , the predicted point could 

have been farer from the previous one. The next predic-

tion will use a larger value for h, for example 2h.  

4.3. Floquet multipliers analysis. Using the method 

exposed previously we caught both periodic solutions 

predicted by both Hopf bifurcations. Then we used the 

continuation scheme which we described and we ob-

tained the results showed in fig. 5 and fig. 6. The circle 

denotes the bifurcation point. The upper curve (a) is 

related to the periodic solution frequency ss Tf /1 . As 

can be observed they are non-synchronous solutions and 

moreover the frequency evolves without following any 

simple rule. The lower curve (b) represents the leading 

Floquet multiplier modulus. Floquet multipliers are 

eigenvalues of the monodromy matrix obtained as com-

putational by-product of the shooting method. To make 

the figures more comprehensible we only drew the Flo-

quet multiplier responsible for the unstability, which is 

the one whose modulus crosses the line 1y . 

Fig. 5 shows that the periodic solution near the bi-

furcation point is unstable. Then we observe a turning 

point and stability is gained. 

 
Fig. 5. Subcritical Hopf bifurcation 

Continuation of the unstable periodic solution 

 
Fig. 6. Supercritical Hopf bifurcation – Continuation of 

the stable periodic solution 
 
Fig. 6 shows a more complex behaviour: as pre-

dicted by the supercritical aspect of the second Hopf 
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bifurcation, the solution is stable near the bifurcation 

point. Then a turning point is reached and stability is 

lost Hzfe 97,15 ) and vice-versa for Hzfe 25,18 . 

Finally, a period doubling bifurcation occurs for 

Hzfe 11,18 . We built this solution but chose not to 

show it because it quickly undergoes Hopf bifurcation 

that would lead to a quasi-periodic solution. 

Subcritical Hopf bifurcation being a catastrophic 

one, we seek a stable solution above the critical excita-

tion value Hzfe 49,14 . 

 
5. Search for a disconnected solution 

 
In order to find a stable solution disconnected from 

the unstable fixed point, we increased ef  from a small 

amount and led a time integration. The solution to 

which the system hung was a periodic non-synchronous 

one. Fig. 7 shows the response frequency versus the 

excitation one. Amplitudes are of the same order than 

previously but this family of periodic solutions has a 

contact force doing some incursions into the negative 

values. Besides, this branch of periodic solutions has 

many bifurcations. We did not represent the Floquet 

multipliers because the curves were hardly legible. 

 
Fig. 7. Global analysis – Continuation of  

a disconnected solution 
 

6. New bifurcation diagram 
 
In view of the complexity and high amount of infor-

mation that need to be taken into account to fully under-

stand and predict the system behaviour, it seemed that a 

new bifurcation diagram should be used. We propose one 

on fig. 8. It  focus on the “bifurcation area”. It portrays 

the response frequency in case of periodic solution (fig. 8, 

a) and the amplitudes of the solution (fig. 8, b). We chose 

the minimum and maximum values reached during a 

period as amplitudes representation for periodic solutions. 

Symbols are used to link curves from both graphs and 

continuous and discontinuous lines are used to distinguish 

stable from unstable states respectively. 

 
Fig. 8. New bifurcation diagram 

 
Conclusion 

 
This simple system proved to have a complex be-

haviour with many bifurcations. Our initial choice to 

write equations in the rotating frame simplifies the re-

sults and their analysis. Moreover, this work emphasizes 

that a simple (classical) bifurcation diagram is not effi-

cient at describing complex behaviour. We proposed a 

new way of representing information.  
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