
Двигатели аэрокосмических летательных аппаратов 83 

УДК 621.452-752:539.219.2.001.5 
 

J.-P. LAINE, V. KHARYTON 

 
Ecole Centrale de Lyon, Laboratory of Tribology and System Dynamics, France   

 
CRACKED STRUCTURE RESPONSE ON EXTERNAL HARMONIC EXCITATION 

 
Contact analysis was performed to demonstrate crack breathing process with contact inside of crack as the  
response on external harmonic excitations. The two approaches of the system order reduction to proceed high 
time consumable nonlinear contact analysis are considered for the structure with crack: the fixed-interface 
method and the free-interface method.  
 
system order, degree of freedom, fixed-interface, free-interface, eigenmodes, contact, crack,  
crack breathing, penalty method, Lagrange multipliers 

 
Introduction 

 
The main goal of the research presented in the article 

is to elaborate appropriate and efficient methods for 

crack detection in aircraft engine turbine blade on the 

base of vibration characteristics. Vibration-based  

inspection of structures could bring an effective set of 

methods and approaches for non-destructive testing. 

The analysis of the dynamic response of a structure on 

external excitation and detection of structure state 

changes taking place during its lifetime could be used as 

on-line faults assessment/detection technique in  

operation [5].  

To reach this it is first necessity to create simplified 

model of the 2d or 3d cracked structure. Then, the  

second stage is time integration analysis of the structure 

dynamic response to external loading taking into  

account non-linear effect from contact inside of the crack.  

Among these problems another one exists – how to 

reduce computation time expenses which are extremely 

high during nonlinear analysis. To solve it, two  

approaches of the system matrices reduction (whether 

mass or stiffness matrices) can be used. They are based 

on classical free-interface and fixed-interface methods 

[3, 9]. In this case, there is only one structure with  

auto-contact at crack interface.  

The majority of the damage-identification methods 

rely on linear structural models. The dynamic behavior 

of the damage structure may be influenced by non-linear 

effects: the opening and closing of the crack (crack 

breathing) during cyclic loading or in operational  

situation. The main results obtained through simulations 

or  experimental studies were that the observed decrease 

in the natural frequencies of the  cracked structure can 

not be described by a model of crack, which is always 

open. A breathing crack gives rise to natural frequencies 

falling between those corresponding to the open and 

closed cases.  

Many researches used periodically varying stiffness 

during crack opening-closing process or bilinear model 

with periodical response on external periodical loading 

[6,7]. The non-linear effects of vibrating cracked struc-

tures can be understood with the help of contact model-

ing inside of the crack (between crack sides). 

 
1. System reduction methods 

 
Contact at the cracked interface is modelled by 

node-to-node contact. The matrix equation of the  

motion can be partitioned into interface relative  
(node-to-node) displacements and other DOFs: 
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where subscripts m and s refer to: m  master DOFs 

defined only on interface nodes; s  all DOFs that are 

not master DOFs.  
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1.1.  Fixed-interface method. In order to project 

physical coordinates on the set of generalized coordi-

nates the transformation matrix has to be constructed. 

For the fixed interface method this matrix is: 
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where      smsssm KKG 1   redundant static con-

straint modes and sΦ   fixed-interface normal modes 

(eigenvectors obtained with interface nodes  

coupled). 

1.2.  Free-interface method. For the free-interface 

method transformation matrix can be derived as fol-

lows: 
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where *
srΦ   matrix of inertia relief modes, which is 

zero in our case; ][*
msmsss ΦGΦΦ  , mΦ    

matrix of the master DOF partition of the free interface 

normal modes (eigenvectors obtained with interface 

nodes free) and sΦ  matrix of the slave DOF partition 

of the free-interface normal modes. 

Final stage is same for both methods: reduction of 

the mass and stiffness matrices and solving of the  

eigenvalues problem: 

                     ., ** TKTKTMTM TT       (5) 

To summarise both methods we can outline that the 

system reduction with fixed-interface method (Craig-

Bampton method) suppose as [9]: 
1. Master DOFs – relative displacements of the 

contact pairs. 

2. Constrained modes – eigenmodes for  

uncracked structure. 

System reduction process with free-interface method 

(McNeal method) retains as [3]: 

1. Master DOFs – relative displacements of the 

contact pairs. 
2. Constrained modes – free modes  

(eigenmodes of the linear cracked structure). 

2. Simplified cracked plate 2d model 
 

We started with 2d model of cracked rectangular 

plate as with the simplest one. Its FE model (fig. 1) was 

created in ANSYS and then both mass and stiffness 

matrices were transfered to MATLAB for subsequent 

processing. 

 
Fig. 1. Simplified 2d model of the cracked structure 

 
 

The relative displacements were introduced in crack 

tips (coinciding nodes) to control and simulate in future 

analyses contact interaction of the crack sides.   

2.1. Reduced systems results with full system. For 

reduced analysis as master two relative displacements of 

the crack tips and three additional modal DOFs were 

retained. In this case total size of system of 14 DOFs 

was reduced to 5 DOFs.  

To proceed the comparisons we used three structure 

state (table 1): plate with fully opened crack, plate with 

closed crack and not sliding edge (relative displace-

ments supposed to be zero), plate with closed crack and 

sliding edge (vertical relative displacement supposed to 

be zero) [8].     

 
3. Modeling of the crack  

breathing process 
 

Previously contact modeling was performed in AN-

SYS for the 2d cracked plate (fig. 1). External harmonic 

excitation tF  sin100  was applied to the top right 

node of the plate (fig. 2). 
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Table 1 
Comparison of the eigenvalues problem solving results of the full and reduced systems 

                                                                                                                                                   
    System state 

 
 

System 
model 

Opened crack Closed crack 
(not sliding edge) 

Closed crack 
(sliding edge) 

First 
mode, 

Hz 

Second 
mode, 

Hz 

Third 
mode, 

Hz 

First 
mode, 

Hz 

Second 
mode, 

Hz 

Third 
mode, 

Hz 

First 
mode, 

Hz 

Second 
mode, 

Hz 

Third 
mode, 

Hz 
Full system 2342 4879 9076 3524 8274 10325 3441 8240 10000 
Fixed-interface 2342 4883 9083 3524 8274 10325 3441 8241 10016 
Free-interface 2342 4879 9076 3524 8281 10369 3441 8249 10039 
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Fig. 2. Time-history of the relative vertical displacement 

between crack tips in ANSYS 
 
3.1. Contact modeling with penalty method. This 

method is widely used in many FEM software because 

of its simplicity and quite efficient results. It was used 

during time integration of the equation of the motion of 

the system by adding additional stiffness to the diagonal 

element of the  stiffness matrix for normal relative dis-

placement at crack interface in case of interference (fig. 

3). In our case equation of motion without damping ma-

trix was used to simulate the structure dynamic beha-

vior: 

               .sin tuu  FKM                      (5) 

The time-integration in MATLAB consisted in  

reduction of the system to the first order and utilization of 

one of the solvers available for the stiff systems. The 

Gear’s method based variable-order solver using the nu-

merical differentiation formulas was employed to solve 

equation of motion. But to control the solution during 

analysis the central differences method was then used: 

.sin2 212 ttt tttttt   FKuMuuu    (6) 

This method showed the same results with a smaller 

computational time expenses and was implemented for 

all following calculations. 
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Fig. 3. Time-history of the vertical relative  

displacements with penalty method  
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Fig. 4. Time-history of the vertical relative displacement 

with Lagrange multiplier method  
 

3.2. Contact modeling with Lagrange multipliers 

method. When constraints equations (contact) are ac-

tive lagrange multiplier represents reaction force be-

tween contact nodes. With the assumption of zero ver-

tical displacement between contact nodes, we can de-
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rive, from the equation of motion, reaction force vector 

that defines the contact status. If contact force is nega-

tive or zero then the contact status is supposed to be 

closed. Otherwise positive contact force refers to a sepa-

ration between the contact nodes and open contact sta-

tus. 

3.3. Contact modeling with taking into account of 

damping.  When doing non-linear analysis without 

damping it is quite difficult to obtain steady solution 

that is  necessary for prospect signal processing analy-

sis, e.g. Fourier transformation. A light Rayleigh damp-

ing gives an apparent steady periodic solution after a 

few periods of excitation.  

For central differences method the new iterative eq-

uation for displacements vector calculation is: 
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Fig. 5. Time-history of the relative displacement with 

Lagrange multipliers method with damping 
 

Conclusions 
 

Proposed original approaches for the system order 

reduction gave very good results (compared with full 

system solution) and computational time expense reduc-

tion. For example, total analysis with contact of the full 

system in ANSYS takes about 1,5 hour then the same 

analysis in MATLAB (reduced model) takes about 2 

min. Now there are no so important differences between 

time expenses for full and reduced systems due to quite 

small size of the system. But in future analysis of realis-

tic 3d cracked structures with the complex geometry it 

would be more evident. Moreover 3d model will give us 

opportunity to employ a friction model inside of crack. 

Signal processing of the response data may help to de-

fine typical behavior of a cracked blade that could help 

us in crack detection. 
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