УДК 681.518.54

В.Ф. МИРГОРОД¹, Г.С. РАНЧЕНКО¹, Н.С. ГОЛУБЕНКО²

¹ОАО «Элемент», Одесса, Украина, ²ПФГ «Конкорд», Днепропетровск, Украина

МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКИХ РЕЖИМОВ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ БОЛЬШОЙ МОЩНОСТИ

Предлагается междисциплинарная математическая модель ветроэнергетической установки, адекватно отражающая динамику комплекса различных физических объектов, входящих в ее состав.

ветроэнергетика, динамика, система управления, моделирование

Введение

Проблема развития альтернативных источников энергии является в настоящее время актуальной и важной для народнохозяйственного комплекса. В этой отрасли энергетики наряду с выпуском относительно маломощных ветроэнергетических установок (ВЭУ) наблюдается переход к созданию более экономичных крупных агрегатов единичной мощностью (2,0...4,0) МВт. Такие ВЭУ являются комплексными объектами, сочетающими как сложные механические и аэродинамические конструкции, так и электрические аппараты и машины, а также сложные информационно-измерительные и управляющие системы. Указанная совокупность разнородных по физическим принципам подсистем обусловливает необходимость решения нового круга задач при их создании, а именно междисциплинарного моделирования динамики ВЭУ с целью оценки достижимых характеристик, отработки алгоритмов управления и имитации нештатных ситуаций.

Анализ проблемы и цель исследования. Расчетные параметры ВЭУ основаны на известных соотношениях аэродинамики винтов в виде характеристик быстроходности [1 – 3], и уравнениях равновесия вращающихся масс [2 – 4]. Для описания электрических машин используются уравнения Клосса [5] и Парка-Горева [6, 7]. Известные методы моделирования охватывают преимущественно устано-

вившиеся режимы, а подсистемы ВЭУ рассматриваются отдельно как ее составные части из условия баланса располагаемой и потребляемой мощностей [8]. Важные вопросы динамики ВЭУ на переходных режимах, совместного функционирования аэродинамической, энергетической и управляющих подсистем недостаточно полно освещены в опубликованных исследованиях.

Целью настоящей работы является создание междисциплинарной математической модели ВЭУ и ее реализация в виде комплекса программно-алгоритмических средств.

Основные результаты

Создаваемая ПФГ «Конкорд» ВЭУ мощностью (0,5...0,75) МВт имеет нетрадиционную конструкцию [1], особенность построения которой заключается в расположении на несущем винте большого диаметра турбомашин с собственными винтовыми группами, ориентированными в плоскости несущего винта. Такая конструкция обеспечивает стабильность ветрового напора на винты турбомашин и большую равномерность используемой мощности по сравнению с традиционными ВЭУ. Энерговырабатывающими агрегатами являются синхронные электрические машины номинальной мощностью 250 кВт. Управление ВЭУ осуществляется поворотом лопастей несущего винта с помощью электро-

приводов разработки ХАКБ (Харьков). Функционирование ВЭУ обеспечивает комплекс взаимосвязанных цифровых информационно-измерительных и управляющих систем разработки ОАО «Элемент» (Одесса). Иллюстративная блок-схема ВЭУ представлена на рис.1.

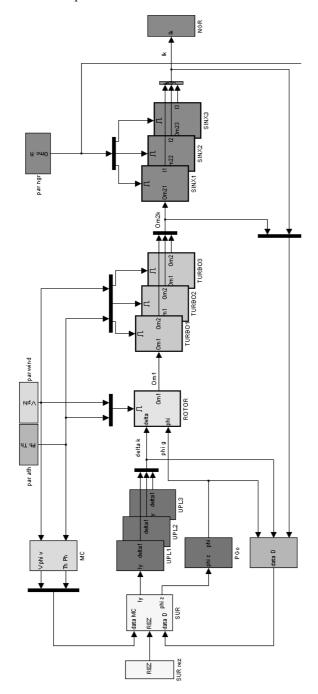


Рис. 1. Блок-схема ВЭУ-750

Для построения междисциплинарной математической модели ВЭУ использован принцип восходящего проектирования моделирующих систем. Методика построения математической модели и ее реали-

зация включают следующие этапы:

- 1. Детальное описание каждого из объектов ВЭУ и подсистем на основе соответствующих физических законов и математических теорий.
- 2. Создание адекватных математических моделей каждого из объектов и подсистем в соответствующей среде описания.
- 3. Реализация математических моделей объектов и подсистем ВЭУ программно-алгоритмическими средствами, в наибольшей мере соответствующими их математическому описанию.
- 4. Выбор программной среды, обеспечивающей комплексирование междисциплинарных моделей объектов.
- 5. Объединение созданных математических моделей в единую междисциплинарную модель.
- 6. Верификация математической модели ВЭУ на базах данных о реальном природном ветре.

Наибольшие возможности для построения междисциплинарных моделей разнородных по физической природе объектов предоставляет интерактивная среда MATLAB с ее приложением Simulink, имеющие развитую систему Toolboxes и Blocksets, допускающих создание средств взаимодействия. В табл. 1 приведен неполный перечень математических моделей объектов и подсистем ВЭУ и средства МАТLAB, с помощью которых выполнена их реализация.

Tаблица 1 Перечень моделей и средств MATLAB

Математические	Средства
модели	MATLAB
Динамика	Simulink, Simmexanics
вращающихся масс	Blockset
Аэродинамика, характе-	Simulink,
ристики быстроходности	Look-Up Tables
Электрические машины	SimPower Systems
(синхронные генераторы)	Blockset
Устройства привода	Simulink, DSP Blockset,
лопастей	Control System Toolbox
Основные регуляторы	DSP Blockset, Control
	System Toolbox
Идентификация	NCD Blockset,
и оптимизация моделей	Simulink
Системы измерения	Communications
параметров	Blockset, DSP Blockset



Рис. 2. Общая схема математической модели ВЭУ

Рис. 3, 4 иллюстрируют динамику при верификации модели на реальных базах данных природного ветра в диапазоне 6 ... 26 м/с.

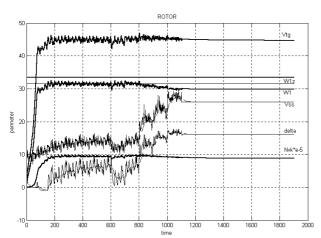


Рис. 3. Диаграмма изменения параметров ветроколеса

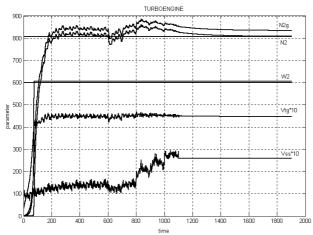


Рис. 4. Диаграмма изменения параметров турбомашин

Общая схема междисциплинарной модели ВЭУ приведена на рис. 2.

Заключение

Математическая модель динамики впервые создаваемого сложного энергетического объекта нетрадиционной конструкции позволила на этапе проектирования оценить соответствие проектных решений ожидаемым результатам, уточнить ограничения по перегрузочным режимам, определить принципы и законы управления таким объектом в условиях нестационарности ветрового потока. Перспективы дальнейших исследований заключаются в верифи-

кации созданной математической модели по данным пробных пусков ВЭУ и создании виртуального стенда имитации режимов ее функционирования.

Литература

- 1. Голубенко Н.С. Аэродинамические особенности безмультипликаторной турбогенераторной схемы ветроэлектрической установки большой мощности // Материалы IV международной конференции «Нетрадиционная энергетика в XXI веке». Крым, Гурзуф, 2003. С. 125-132.
- 2. Твайдел Дж., Уэйр А. Возобновляемые источники энергии: пер. с англ. М.: Энергоатомиздат, 1990. 392 с.
- 3. Шефтер Я.И. Использование энергии ветра. М.: Энергоатомиздат, 1983. 200 с.
- 4. Johnson G. Wind Energy System. New York. NY: Prentice Hall, 1985. 421 p.
- 5. Левин Н., Белавин О., Агеев В. Включение асинхронного ветрогенератора в сеть с предварительной нагрузкой ветродвигателя // Computer modeling & New Technologies. 1999. Vol. 3. P. 102-107.
- 6. Заболотный И.П. Математическая модель и методы анализа динамических режимов синхронных генераторов // Вісник Нац. техн. ун-ту "ХПІ". $2001. N \cdot 17. C. 62-64.$
- 7. Медведев М.Ю., Веселов Г.Е. Аналитическое конструирование агрегированных регуляторов: управление ветроэнергетическими установками // Управление и информационные технологии. Всероссийская НТК 3-4 апреля 2003 г., Спб. Т. 1. С. 215-220.
- 8. Дьяконов В.П. MATLAB 6/6.5+ Simulink 4/5. Основы применения. Полное руководство пользователя. М.: Солон-пресс, 2002. 768 с.

Поступила в редакцию 16.06.2006

Рецензент: д-р техн. наук, проф. В.Д. Гочунский, Одесский национальный политехнический университет, Одесса.