УДК 533.9.07

М.Т. АЛИЕВА, Н.Н. КОШЕЛЕВ, А.В. ЛОЯН

Национальный аэрокосмический университет им. Н. Е. Жуковского "ХАИ", Украина

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ПЛАЗМЫ ВО ВНЕШНЕМ СТОЛБЕ РАЗРЯДА С ПОЛЫМ КАТОДОМ ПРИ РАЗЛИЧНОЙ ГЕОМЕТРИИ ВЫХОДНОГО ОТВЕРСТИЯ

Проведено исследование влияния толщины диафрагмы на параметры плазмы во внешнем столбе разряда катода, работающего в диодном режиме в зависимости от массового расхода. Приведены основные тенденции распределения параметров плазмы и разрядных параметров в зависимости от режима работы катода.

катод, диафрагма, ленгмюровский зонд, параметры плазмы, температура электронов, концентрация, функция распределения электронов по энергиям.

Введение

Остается достаточно актуальным вопрос об улучшении основных электрических, газовых и ресурсных характеристик безнакального полого катода. Одним из узлов, влияющих на ресурс катода, а, следовательно, и ЭРД является диафрагменный узел. Проведенные нами ранее исследования по влиянию диаметра выходного отверстия катода на параметры разряда при различных массовых расходах в диодном режиме [1] показали, что диаметр выходного отверстия оказывает непосредственное влияние на разрядные характеристики в диодном режиме. Но, что более важно, как было показано рядом авторов, в том числе [6, 7], режим работы катода оказывает существенное влияние на характеристики двигателя.

1. Формулирование проблемы

Как было отмечено в [1], эксперимент проводился с диафрагмами толщиной 2 мм и было показано, что существует оптимальных диаметр выходного отверстия для работы на заданных токах.

Однако остался нерешенным вопрос о влиянии толщины ди-афрагмы на параметры внешнего столба разряда при всех прочих равных условиях. Задачей настоящей работы было определить влияние

толщины диафрагмы и массового расхода на параметры внешнего столба разряда катода в диодном режиме, а также на режимы его работы. Измерение параметров плазмы предполагается произвести с помощью цилиндрического ленгмюровского зонда.

2. Решение проблемы

Исследования проводились на лабораторной модели катода со сменным диафрагменным блоком (рис. 1). Для работы использовались диафрагмы с выходным отверстием диаметром 0,4 мм и толщинами 0,5 мм, 1 мм и 2 мм. Катод работал при токе разряда $I_d \sim 4$ А и массовом расходе ксенона в диапазоне 0,15 ... 0,35 мг/сек.

Рис. 1 Лабораторная модель катода с блоком сменных диафрагм

2.1. Зондовая измерительная аппаратура

Для измерения BAX зонда использовался измерительный комплекс ZOND, далее комплекс. Комплекс состоит из таких основных частей:

- 1. Измерительный блок.
- 2. Интерфейс.
- 3. Механизм перемещения зонда по 2 координатам.
- 4. Блок программ обработки измерений.
- 5. Собственно зонд.
- 6. Комплект соединительных кабелей.

Этот комплекс позволяет измерять BAX с последующей передачей данных на ЭВМ.

Комплекс работает следующим образом.

Измерительный блок подает пилообразное напряжение на зонд и проводит измерение ВАХ в автоматическом или ручном режимах.

Кроме основных команд, измерительный блок выполняет процедуры калибровки, переключения шунтов, изменения диапазона измерений, количества измерений. Обработка ВАХ зонда производится с помощью блока программ.

Управляемый от ЭВМ механизм перемещения зонда по 2-м координатам обеспечивает диапазон установки ± 50 мм по двум осям с точностью позиционирования 0,01мм по каждой из координат. На рис. 2 показана фотография механизма перемещения находящего в вакуумной камере в режиме измерения зондовых характеристик.

Рис. 2. Механизм перемещения зонда

Технические характеристики комплекса:

- 1. Количество измерительных каналов 2 шт.
- 2. Разрядность ADC 1 и 2 16.
- 3. Время проведения 1 измерения ADC 1 µк сек.
- 4. Напряжение зонда «-80 В»÷«+80 В».
- 5. Количество шунтов 6 шт.
- 6. Количество управляемых координат 2 шт.

7. Интерфейс обмена с PC – RS 232.

2.2. Описание эксперимента

В процессе проведения эксперимента исследовалась область 10X10 см на расстоянии 5 мм от торца диафрагмы. С помощью координатного устройства осуществлялось перемещение зонда в этой области с шагом по оси X 0,5 мм и по оси Y – 2 мм и в каждой из этих точек измерялись BAX зонда, на основании которых проводился дальнейший расчет основных параметров разрядной плазмы (рис. 3).

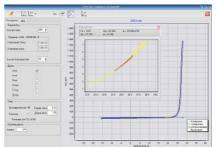


Рис. 3. Экспериментальная ВАХ зонда

2.3. Методика обработки зондовых измерений

Предварительные измерения параметров плазмы во внешнем столбе с полым катодом показали, что для обработки ВАХ зонда можно воспользоваться стандартными методами в предположении Максвелловской ФРЭЭ. Доказательство последнего было подтверждено вычислением ФРЭЭ из 2-й производной зондового тока экспериментальной ВАХ по методу Дрювестейна и сравнение ее с теоретической, полученной из результатов стандартной методики.

Рис. 4. Экспериментальная и Максвелловкая ФРЭЭ

Сравнительный анализ показал незначительное их различие только в области высокоэнергетичных электронов, что дает подтверждение о применимо-

сти выбранной методики вычисления основных параметров плазмы.

3. Апробация методики расчета

Были проведены предварительные исследования с лабораторной моделью катода ХАИ. По полученным результатам можно судить не только о параметрах плазмы, но и о соосности выходного отверстия у диафрагмы. Как видно (рис. 5, 6) выходное отверстие у диафрагмы было выполнено под углом к оси и поэтому эквипотенциальные линии распределение температуры электронов и концентрации заряженных частиц оказались смещенными в сторону угла наклона выходного отверстия диафрагмы.

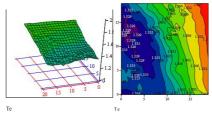


Рис. 5. Распределения температуры электронов

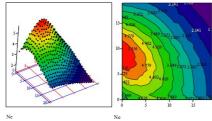


Рис.6. Распределение концентрации заряженных частиц

Также были проведены исследования области 15X15 мм с шагом 1,5 мм катода с диаметром выходного отверстия 0,25 мм при $I_d = 2.5$ A и массовом расходе 0,4 мг/сек.

Из результатов этого эксперимента можно увидеть (рис. 7, 8), что область ионизации при данном режиме работы катода находиться не в области диафрагмы, а за ней.

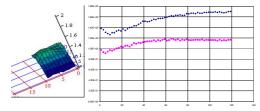


Рис. 7. Распределения температуры электронов

Рис. 8. Распределение концентрации

Еще одним из заслуживающего внимания фактором является то, что при работе на расходах превышающих оптимальный (0,45 мг/сек) при $I_d=4\mathrm{A},$ $U_\mathrm{d}=26\mathrm{B}$ (толщина диафрагмы 2 мм) наблюдается резкое снижение температуры электронов на оси разряда и резкое увеличение концентрации (рис. 9, 10). Это можно объяснить явлением контракции разряда на диафрагме.

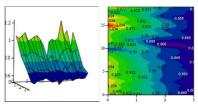


Рис. 9. Распределения температуры электронов

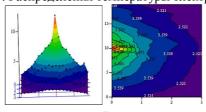


Рис. 10. Распределение концентрации заряженных частиц

4. Результаты

Основной эксперимент проводился с диафрагмами толщиной 0,5; 1; 2 мм и диаметром выходного отверстия 0,4 мм на разрядном токе $\sim 4A$ с изменением массового расхода от 0,35 до 0,15 мг/сек. На рис. 11, 12 представлено поле распределения температуры электронов и концентрации для диафрагмы с толщиной 2 мм.

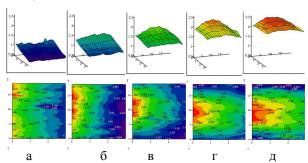
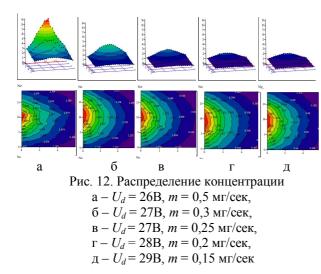
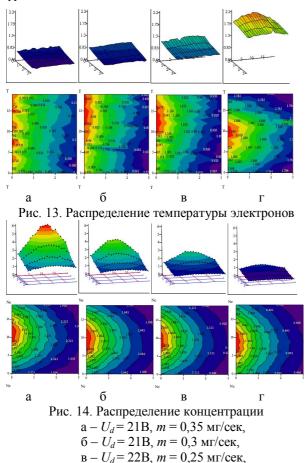
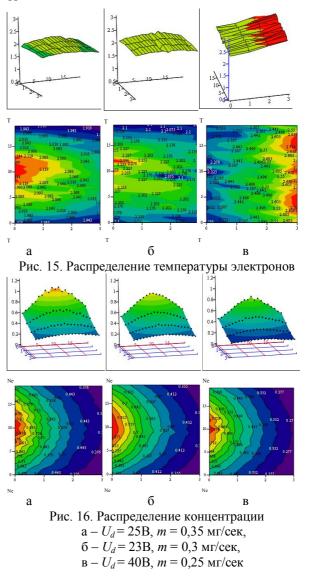




Рис. 11. Распределение температуры электронов

Отмечается тенденция увеличения средней величины температуры электронной компоненты при уменьшении массового расхода. При этом разрядное напряжение также растет с уменьшением массового расхода. Обратная картина наблюдается с максимальной величиной концентрации.


На рис. 13, 14 представлено поле распределения температуры электронов и концентрации для диафрагмы с толщиной 1 мм.

 $\Gamma - U_d = 23$ В, m = 0.2 мг/сек

При работе с этой диафрагмой сохраняется тенденция поведения температуры электронной компоненты, однако средняя величина температуры на 25% ниже, чем при работе с диафрагмой толщиной 2 мм. То же самое наблюдается и с разрядным напряжением. При этом сохраняется уменьшение максимальной величины концентрации с уменьшением массового расхода.

На рис. 15, 16 представлено поле распределения температуры электронов и концентрации для диафрагмы с толщиной 0,5 мм.

При работе с этой диафрагмой наблюдается значительное увеличение средней температуры электронов по сравнению с диафрагмами большей толщины при прочих равных условиях. При массовых расходах 0,35 и 0,3 мг/сек тенденции поведения

температуры и концентрации остаются неизменными (температуры электронной компоненты падает от катода к аноду). Однако при расходе 0,25 мг/сек наблюдается рост температуры не в окрестности диафрагмы, а у анода.

Заключение

В результате проведенных исследований было показано, что, в зависимости от геометрии диафрагмы, в струю двигателя могут инжектироваться электроны с энергией от 0,5 до 3 эВ. При этом существует два различных способа генерации электронов. Один из них — все процессы генерации электронов заканчиваются на катоде, и второй — когда характеристики во внешнем столбе разряда такие, при которых генерация электронов продолжается и в положительном столбе (в плазме разряда).

Исследования распределения параметров плазмы в положительном столбе разряда смогут позволить определить процессы, происходящие при транспортировке электронов в прианодной области.

Благодарность

Осуществление экспериментов было проведено в рамках международного проекта Украинско-Французского сотрудничества «ДНІПРО» № М/264-2003 от 10 июля 2003 г. «Дослідження властивостей порожнистого катода у взаємодії з прискорювачем холловського типу» и проекта INTAS 03-53-3358 April 1–2004 — April 1–2005 «Васк-ground studies for the development of high ISP Hall Plasma Thrusters». Особая признательность выражается профессору Andre Bouchoule и профессору Michel Dudeck за профессиональные консультации в ходе обсуждения данных вопросов в процессе проведения исследований.

Литература

- 1. Алиева М.Т. Экспериментальное исследование влияния размеров диафрагмы на параметрах работы катода в диапазоне токов от 3 до 5 А//Авіаційно-космічна техніка і технологія. 2003. № 40/5. С. 165 167.
- 2. Черняк В.Я., Чабан Ю.А., Платонов В.П. и др. Об измерениях температуры ионов плазмы зондовым методом // ТВТ. -1989. № 60.
- 3. Алексеев В.В., Котельников В.А. Зондовый метод диагностики плазмы. –М.: Энергоатомиздат, 1988. 234 с.
- 4. Зондовая диагностика низкотемпературной плазмы / Ф.Г. Бакшт, Г.А. Дюжев, В.Б. Каплан, Н.К. Митрофанов, Е.А. Старцев, Б.И. Циркель, С.М. Школьник, В.Г. Юрьев. Л.: Акад. наук СССР. Физико-технический институт им. А.Ф. Иоффе, 1977. 573 с.
- Райзер Ю.П. Физика газового разряда. М.: Наука, 1981. – 698 с.
- 6. Interaction of a Hallow Cathode Stream With a Hall Thruster L. Albarède, V. Lago, P. Lasgorceix, M. Dudeck, K. Malik, A. Loyan, A.I. Bugrova // International Electric Propulsion Conference IEPC-03 28th. Toulouse, France. (03, 17-21 March) 2003. P. 333.
- 7. Comparison of the interaction between an Hall thruster (SPT100-ML) and four types of hollow cathodes L. Albarède, V. Lago, P. Lasgorceix, M. Dudeck, K. Malik, A. Loyan, A.I. Bugrova // Internatio-nal Electric Propulsion Conference IEPC-03 28th. Toulouse, France. (03, 17-21 March) 2003. P. 325.

Поступила в редакцию 13.06.2005

Рецензент: д-р техн. наук, проф. Н.В. Белан, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.