УДК 621.455.03

А.В. ЛОЯН, Н.Н. КОШЕЛЕВ

Национальный аэрокосмический университет им. Н. Е. Жуковского "ХАИ", Украина

РАБОТА БЕЗНАКАЛЬНОГО ПОЛОГО КАТОДА В УСЛОВИЯХ 200 ММ ПЛАЗМЕННОГО ИОННОГО ДВИГАТЕЛЯ С РАДИАЛЬНЫМ МАГНИТНЫМ ПОЛЕМ

Приведены результаты испытаний плазменного ионного двигателя на ксеноне. Отмечены особенности работы катодов в газоразрядной камере с радиальным магнитным полем.

безнакальный полый катод, газоразрядная камера, плазменный ионный двигатель, электрореактивный двигатель

Введение

Одним из наиболее отработанных, опробованных в условиях космоса, надежных и обладающих большим ресурсом работы из электрореактивных двигателей (ЭРД) является плазменный ионный двигатель (ПИД). Наверно поэтому, на сегодняшний день он является востребованным для решения широкого круга задач передвижения космических объектов [1-3].

1. Формулирование проблемы

Последние два года в лаборатории ЭРД Национального аэрокосмического университета проводились разработка и испытания ПИД-200 с радиальным магнитным полем по заказу КНР. Требования к параметрам двигателя приведены в табл. 1.

Как видно, величины тяги и удельного импульса не свойственны модели двигателя диаметром 200 мм, поэтому параметры эффективности устройства с трудом достижимы.

Схема двигателя с системами питания и измерения представлены на рис. 1. Как видно ПИД имеет плоскую газоразрядную камеру (ГРК) с радиальным газовым анодом и катодным блоком (КБ) с тепловым экраном, образующим доразгонную щель электронов. В КБ установлен безнакальный полый катод (БНК), оптимизация которого была одним из факторов достижения эффективности работы ПИДа.

Таблица 1 Требования к параметрам двигателя

Един. изм.	Значение
	Xe
мН	40**±4
c	3000 -
	3500**
MM	200 ±2
Вт	1100
МИН	≤ 15
еВ/ион	≤ 240
час	≥ 8000*
	≥ 5000*
В	15
%	≤ 3
%	≥ 80
	мН с мм Вт мин еВ/ион час В %

- * требования учтены при разработке и не подтверждаются экспериментально
 - ** параметр подтверждается при ПСИ ПИД-200

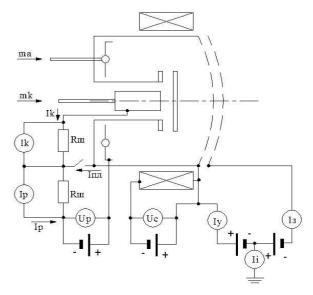


Рис. 1. Электрическая схема ПИД

2. Решение проблемы

Оптимизация — это собственно выбор катода на номинальный ток работы, который значительно отличается от тока разряда. Это можно подтвердить, если привести типичные параметры работы ПИД-200 (табл. 2).

Таблица 2 Типичные параметры работы ПИД-200

		т					
$\mathrm{U_{p},}\ \mathrm{B}$	I _p ,	I _{coл} ,	I _{ek} ,	U _{к-д} ,	U _y ,		
В	A	A	Α	В	В		
53	3,4	1,4	1,9	11,5	1100		
50	4	2,4	2,4	7,8	1100		
U ₃ , B	т _к , мг/сек	т _а , мг/сек	n	C_{i}	I_{i}		
580	0,2	1,1	0,8	237	0,78		
600	0,22	1,1	0,8	230	0,78		

Различие токов объясняется интенсивной генерацией электронов в ГРК, условно разделенной на зоны: прикатодной плазмы, зоны ускорения электронов и зоны ионизации основного рабочего тела.

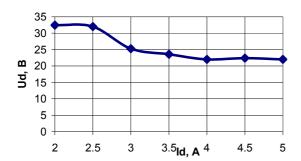


Рис. 2. ВАХ катода М5

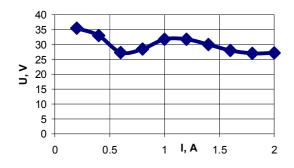


Рис. 3. ВАХ катода М2

Таким образом, катод с номинальным током на 2 A оказался более эффективен, чем катод на 5 A, что подтверждают их вольтамперные характеристики при испытаниях в диодном режиме (рис. 2, 3).

Заключение

Проведенные испытания ПИД-200 с безнакальным полым катодом в качестве источника электронов основного разряда показали, что одним из факторов улучшения эффективности двигателя является выбор катода на номинальный рабочий ток.

Измеренный электронный ток эмиссии катода в данной модели двигателя составил примерно половину разрядного тока, что позволило использовать более слаботочный катод и тем самым снизить энергетические и газовые параметры газоразрядной камеры ПИД-200.

Литература

- 1. Muriel Noca Next Generation Ion Engines: Mission Performances // IEPC-2003 28th International Electric Propulsion Conference. Toulouse, France. 2003, 17 –21 March. P. 149.
- 2. Development and Performance of the Advanced Radio Frequency Ion Thruster RIT-XT / Hans. J. Later, Rainer Killinger, Helmut Bassner, Johan Muller, Ralf Kukies // IEPC-2003 28th International Electric Propulsion Conference. Toulouse, France. 2003, 17 21 March. 2003. P. 115.
- 3. End-of-Mission Characterization of the Ion Thruster on DS1 / John Brophy, Dave Brinza, James Polk, Mike Henry // IEPC-2003 28th International Electric Propulsion Conference. Toulouse, France. 2003, 17 21 March. 2003. P. 244.

Поступила в редакцию 29.04.2004

Рецензент: д-р техн. наук, проф. Н.В. Белан, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.