УДК 621.455.03

М.Т. АЛИЕВА, Т.А. МАКСИМЕНКО

Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина

ЗОНДОВЫЕ ИЗМЕРЕНИЯ ПАРАМЕТРОВ КАТОДНОЙ ПЛАЗМЫ И ПЛАЗМЫ СПД МАЛОЙ МОЩНОСТИ

Проведено исследование параметров струи разрядной плазмы катода-компенсатора, работающего в диодном режиме и совместно с СПД малой мощности, при помощи метода электростатического зонда. Определено влияние катодного массового расхода на характеристики двигателя.

катод-компенсатор, стационарный плазменный двигатель, электростатический зонд, цилиндрический зонд, температура, концентрация, интегральный ионный ток

Введение

Как известно, еще в 70-х годах прошлого века было доказано, что для задач коррекции и поддержания орбиты КЛА преимуществами обладают двигательные установки (ДУ) на базе электрореактивных двигателей (ЭРД), в частности хорошо себя зарекомендовали стационарные плазменные двигатели (СПД), относящиеся к классу холловских двигателей (ХД) [1]. В настоящее время ведутся активные работы по расширению области применения СПД: для маршевых задач, для ориентации космического летательного аппарата (КЛА) [2]. Актуальной является проблема разработки СПД малой мощности с параметрами, приемлемыми для применения на малых КЛА типа микроспутник. Одним из основных требований для проектирования ДУ данного класса является очень малая потребляемая мощность двигателя - менее 100 Вт. Ограничения, накладываемые на размеры двигателя, серьезно усложняют задачу разработки магнитной системы СПД. В то же время, для обеспечения работы двигателя с таким малым уровнем мощности, ограничивается диапазон рабочих токов катода (0,2 ... 1 А), что и создает определенные трудности в проектировании и изготовлении данного узла.

Параметры работы катода во многом определяют ресурс, надежность и динамические свойства двигательной установки, а также заметно влияют на ее энергетическую и газовую экономичность. Однако

необходимо отметить, что для катодного узла важна не только стабильность работы, но и минимальные энергетические затраты на поддержание разряда в самоподдерживающемся режиме.

Обзор публикаций и анализ нерешенных проблем

Ведущие мировые разработчики ракетно-космической техники проводят активные работы в области разработки и исследования ХД малой мощности [3 – 5]. Однако, имеющиеся на сегодняшний день ХД малой мощности полностью не удовлетворяют поставленным требованиям. Одной из основных проблем, ввиду ограничений по мощности, является разработка магнитной системы, а также катода-компенсатора. В работе [6] был проведен анализ влияния работы катодов различных конструкций на параметры работы СПД. Также проводился сравнительный анализ разрядной плазмы катода, работающего в диодном режиме, и совместно с СПД.

Широко используемым методом исследования параметров ХД является метод диагностики струи плазмы при помощи электростатических зондов. Данный метод при относительной простоте и малых затратах может дать значительную информацию о локальных и интегральных параметрах плазмы и соответственно возможность определения путей улучшения характеристик малых СПД (МСПД).

1. Цель работы

Целью данной работы является исследование параметров МСПД и катода-компенсатора, разработанных в «ХАИ» с помощью зондовых измерений в зависимости от катодного массового расхода, а также сравнение разрядных характеристик безнакального полого катода, работающего совместно с двигателем и в диодном режиме. Определение оптимальных режимов работы катода и его влияния на характеристики двигателя.

1.1. Общие соотношения

Обработка зондовых ВАХ проводилась стандартным методом в приближении максвелловского распределения. Из формулы Бома в размерном виде [5] определялась концентрация ионной составляющей плазмы \mathbf{n}_i , для чего предварительно измерялась плотность ионного тока насыщения \mathbf{j}_i , и определялась температура электронов \mathbf{T}_e по наклону возрастающего участка зондовой ВАХ в полулогарифмическом масштабе. Для зонда плоской геометрии принималось, что $\alpha=0.8$, для цилиндрического зонда $\alpha=0.4$.

$$j_i = \alpha \, en_i (2kT_e/m_i)^{1/2}$$
, (1)

где j_i – плотность ионного тока насыщения; α – коэффициент, учитывающий геометрию зонда; e – заряд электрона; n_i – концентрация ионов; k – постоянная Больцмана; T_e – температура электронов; m_i – масса иона.

Потенциал плазмы определялся по формуле [5]:

$$U_{III} = U_f + T_e \ln[(e/4\pi)\sqrt{m_i/m_e}],$$
 (2)

где U_f – плавающий потенциал плазмы (при котором поток электронов на зонд равен потоку ионов, так что результирующий ток на зонд равен нулю).

В качестве рабочего тела использовался ксенон (Xe). Давление в вакуумной камере составляло $0.8..1.4*10^{-4}$ торр.

2. Экспериментальный стенд. Измерительное оборудование

Для проведения зондовой диагностики струи плазмы было изготовлено устройство, состоящее из девяти плоских зондов $\varnothing 12$, закрепленных на специальном кронштейне, обеспечивающем расстояние R500 от среза СПД с максимальным углом раскрытия 60° (рис. 1), а также цилиндрический зонд $\varnothing 0,1$ и 1=1,5 мм для измерения параметров катодной плазмы, который устанавливался на расстоянии 2 мм от торца катода и на 1 мм от оси выходного отверстия диафрагмы.

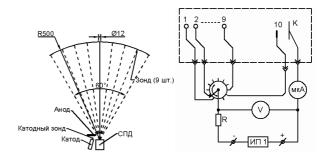


Рис. 1. Схема устройства для зондовых измерений

Электрическая схема проведения эксперимента представлена на рис. 2.

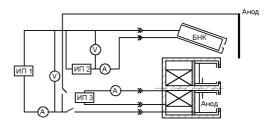


Рис. 2. Электрическая схема эксперимента

2.1. Методика проведения эксперимента

Целью проводимых экспериментов являлось определение влияния катодного массового расхода на параметры плазмы и разрядные характеристики СПД малой мощности.

Эксперимент проводился при фиксированном разрядном напряжении СПД U = 200 В. Измерялись

характеристики на 10 зондах для определения параметров плазмы катода при работе совместно с СПД, а также параметров плазмы стационарного плазменного двигателя, затем происходило переключение на работу катода в диодном режиме и при том же разрядном токе.

3. Результаты

По результатам зондовых измерений была определена $T_{\rm e}$ катодной плазмы для двух режимов работы.

На рис. 3 представлены зависимости T_e катодной плазмы от \dot{m}_{cath} как в диодном режиме, так и при работе совместно со стационарным плазменным двигателем.

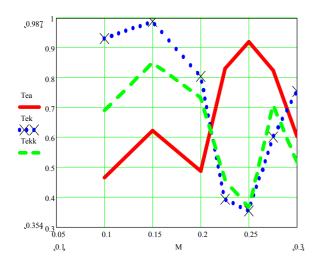


Рис. 3. Зависимость T_e от \dot{m}_{cath} :

 T_{ea} – температура электронов на расстоянии 0,5 м от среза двигателя; T_{ek} – температура электронов у среза катода при работе с СПД; T_{ekk} – температура электронов у среза катода при работе в диодном режиме

Видно, что при меньшем массовом расходе T_e катодной плазмы несколько выше при работе совместно с СПД, хотя обе кривые имеют идентичный провал в районе расхода 0.25 мг/c.

На рис. 4 представлены зависимости концентрации электронов в зависимости от массового расхода.

На рис. 5 представлены зависимости напряжения разряда и напряжение между катодом и поджигным электродом в диодном режиме и в режиме работы СПД от массового расхода.

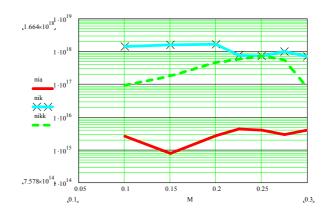


Рис. 4. Зависимость концентрации электронов от массового расхода.

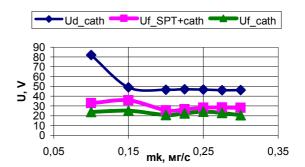


Рис. 5. Вольтрасходная характеристика: Ud — разрядное напряжение в диодном режиме; Uf_SPT-cath — напряжение между катодом и поджигным электродом при работе совместно с СПД; Uf_cath — напряжение между катодом и поджигным электродом при работе в диодном режиме

Необходимо отметить, что при расходе $\dot{m}_{cath}=0,3...0,2$ мг/с колебания по напряжению в диодном режиме составляли $\pm 0,025$ В, при работе с СПД колебания по току составляли $\pm 0,0225$ А. При расходе $\dot{m}_{cath}=0,1$ мг/с наблюдалась неустойчивая работа СПД. Расход $\dot{m}_{cath}=0,15$ мг/с обеспечил наиболее стабильную и устойчивую работу катода как совместно с СПД, так и в диодном режиме.

Проведена диагностика струи плазмы при помощи описанного устройства для зондовых измерений. В результате были получены следующие характеристики двигателя: α — угол раскрытия струи плазмы (угол, в который попадает 90% ионного тока), I_i — интегральный ионный ток (определялся интегрированием углового распределения плотности ионного тока по поверхности сегмента), I_i/I_p — отношение интегрального ионного тока к разрядному. Измере-

ния проводились при напряжении разряда $U_d = 200~V$, и ранее определенном оптимальном катодном массовом расходе $\dot{m}_{cath} = 0,15~\text{мг/c}$, при этом варьировались значения анодного массового расхода и тока катушки намагничивания. Данные, полученные в результате измерений, приведены в табл. 1.

Таблица 1 Результаты измерений

U _d ,V	m _a ,	m _{cath} ,	I _{coil} , A	I _d , A	α	I _i , A	I_i/I_p
200	0,3	0,15	2,5	0,245	29,7	0,071	0,290
	0,35	0,15	2,5	0,32	29,4	0,089	0,278
	0,35	0,15	3	0,3	29,5	0,097	0,323
	0,4	0,15	2,5	0,4	29,7	0,105	0,263
	0,4	0,15	3	0,355	29,5	0,127	0,358
	0,4	0,15	3,5	0,34	29,4	0,108	0,318

Как видно из полученных результатов, угол раскрытия струи слабо меняется в данном диапазоне значений анодного массового расхода и тока катушки намагничивания. В то же время отношение интегрального ионного тока к разрядному возрастает с увеличением массового расхода и тока катушки намагничивания и принимает максимальное значение при $m_a = 0.4$ мг/с и $I_{coil} = 3$ A.

Заключение

Проводились эксперименты с СПД-20М1 малой мощности и безнакальным полым катодом М1.04. Во время экспериментов безнакальный полый катод работал как совместно с двигателем, так и в диодном режиме. Измерения проводились в струе СПД при анодном расходе рабочего тела $m_a \approx 0.4$ мг/с, разрядное напряжение составляло $U_p = 200$ V.

Найден оптимальный режим работы данного катода как в диодном режиме, так и совместно с СПД при $m_{cath}=0,15$ мг/с. В результате зондовых измерений определены основные параметры струи плазмы СПД при $m_a=0,3...0,4$ мг/с, $U_d=200$ V и $I_{coil}=2,5...3$ А. При $m_a=0,4$ мг/с, $m_{cath}=0,15$ мг/с,

 $U_d = 200 \text{ V и I}_{coil} = 3 \text{ A получено максимальное от$ $ношение интегрального ионного тока к разрядному.}$

Литература

- 1. David G. Fearn, Stephen D. Clark. The Potential Application of Small Electrically propelled Spacecraft to Low-cost Interplanetary Missions // 28th International Electric Propulsion Conference IEPC-03 (2003, 17 21 March). Toulouse, France. 2003. P. 193.
- 2. Bober A., Guelman M. Analysis of Hall-Effect Thrusters and Ion Engines for Eath-to-Moon Transfer // 28th International Electric Propulsion Conference IEPC-03 (2003, 17 21 March). Toulouse, France. 2003. P. 34.
- 3. Ahedo E., Gallardo J.M. Scaling Down Hall Thrusters // 28th International Electric Propulsion Conference IEPC-03 (2003, 17 21 March). Toulouse, France. 2003. P. 104.
- 4. Hruby V., Monheiser J., Pote B. Low Power Hall Thruster Propulsion System // 26th International Electric Propulsion Conference IEPC-99-092 (1999, 17 21 October). Kitaky-ushu, Japan. 1999. Vol. 1. P. 544 551.
- 5. Belikov M.B., Gorshkov O.A., Rizakhanov R.N. The Output Parameters and Angular Plume Characteristics of Low Power Hall Thruster // 26th International Electric Propulsion Conference IEPC-99-094 (1999, 17 21 October). Kitakyushu, Japan. 1999. Vol. 1. P. 552 558.
- 6. Albarède L., Lago V., Lasgorceix P., Dudeck M., Malik K., Loyan A., Bugrova A.I. Interaction of a Hallow Cathode Stream With a Hall Thruster // 28th International Electric Propulsion Conference IEPC-03 (2003, 17 21 March). Toulouse, France. 2003. P. 333.

Поступила в редакцию 25.04.2004

Рецензент: д-р техн. наук, проф. Н.В. Белан, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.