УДК 658.012.4

Е.А. ФРОЛОВ, В.Н. ГОЛОВАНОВ

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

ОЦЕНКА ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ УДАРНОЙ ШТАМПОВКИ СЛОЖНОРЕЛЬЕФНЫХ ТОНКОЛИСТОВЫХ ДЕТАЛЕЙ

Предложена методика определения технико-экономической эффективности внедрения новых процессов на основе метода ударной штамповки жидкостью и полиуретаном. Для деталей сложной формы определены наиболее рациональные области применения этого метода.

ударная штамповка, листовая деталь, сложная форма, эффективность, область применения

Введение

При получении сложных деталей аэрокосмической техники ударной штамповкой особое внимание следует обращать на такие факторы, как геометрическая форма, размеры и материал детали с учетом технологических возможностей серийно выпускаемого ударного оборудования, так как эффективность внедрения ударной штамповки определяется главным образом правильным подбором номенклатуры деталей [1].

1. Формулирование проблемы

Геометрическая конфигурация рельефа деталей определяет её сложность, а значит число операций и переходов, необходимых для её изготовления. Форма детали должна обеспечивать технологичность изготовления данным методом.

Размеры штампуемой детали должны соответствовать технологическим возможностям пневмоударного оборудования моделей Т-1324 и ТА-1324 (штамповка жидкостью и полиуретаном). Наибольшее применение ударная штамповка находит при изготовлении сложных деталей из плоских заготовок с размерами в плане от 30 до 750 мм и пространственных деталей с диаметром от 50 до 500 мм и высотой до 400 – 500 мм.

Широкое промышленное внедрение в различных отраслях машиностроения показало, что ударная

штамповка, как и другие импульсные методы штамповки, повышает по сравнению с традиционными статическими процессами точность размеров и качество поверхности за счет уменьшения пружинения, а также позволяет решить проблему значительного снижения затрат, трудоемкости и сроков подготовки производства.

Одним из важнейших факторов при выборе деталей для импульсной штамповки является трудность или невозможность получения их традиционными методами, а также недостаточные энергетические характеристики существующего оборудования для выполнения отдельных элементов формы с требуемой точностью размеров и качеством поверхности.

2. Решение проблемы

При замене существующего технологического процесса ударной штамповкой необходимо руководствоваться технико-экономической эффективностью нового процесса, при которой доля ручного труда и затраты на штамповую оснастку по сравнению с другими методами значительно ниже. При этом большое значение имеют установленные оптимальные границы применения ударной листовой штамповки в существующем технологическом процессе с учетом минимальных изменений остающихся операций и штамповой оснастки.

Экономичность метода ударной штамповки жидкостью или полиуретаном определяется его технологической себестоимостью.

Технологическая себестоимость годовой программы деталей складывается из двух составляющих:

— переменных расходов V, которые связаны с затратами на каждую деталь (к затратам на каждую деталь относятся затраты на основные материалы, электроэнергию, зарплату производственных рабочих, а также расходы, связанные с работой оборудования) и с изменением программы производства; соответственно изменяются переменные расходы на программу, равные $V = L \cdot N$, где L — затраты на каждую деталь; N — величина производственной программы;

- постоянных расходов Q, не зависящих от программы и состоящих из оплаты подготовительно-заключительных работ и расходов на технологическую оснастку.

Для сравнения и выбора наиболее экономичного процесса можно воспользоваться соотношением

$$E = L + Q/N, \tag{1}$$

где E — затраты на выполнение технологического процесса над одной деталью (технологическая себестоимость).

При условии $E_1 = E_2$ (индексы 1 и 2 — сравниваемые варианты) можно найти критическую программу, при которой целесообразно применение любого из сравниваемых вариантов:

$$L_1 + Q_1/N = L_2 + Q_2/N;$$
 (2)

$$L_1 - L_2 = Q_2/N - Q_1/N; (3)$$

$$N_{kp} = (Q_2 - Q_1)/(L_1 - L_2). (4)$$

Условиями целесообразности применения первого варианта по сравнению со вторым можно считать $N < N_{k_{D}}$ и $E_1 < E_2$.

Таким образом, при выборе оптимального варианта наиболее экономически эффективным будет тот, который обеспечивает наименьшую себестоимость детали.

При применении инструментальных штампов из дорогостоящих сталей Q будет велико, а N в условиях мелкосерийного производства мало и L будет много меньше, чем Q/N, при этом себестоимость одной детали будет велика. При использовании оснастки для ударно-импульсной штамповки (штамп состоит из одной матрицы или одного пуансона) Q будет значительно меньше, а стало быть, сравнительно меньше и себестоимость.

Для определения границ применяемости ударноимпульсной штамповки с экономической точки зрения целесообразно определять технологическую себестоимость

 $C_T = M + 3 + \Im + A + B + P + Q_{u.o}/N$, (5) где M – стоимость основного материала; 3 – заработная плата производственных рабочих; \Im – затраты на энергию и энергоносители; A – амортизационные отчисления; B – расходы на вспомогательные материалы; P – затраты на текущее обслуживание и ремонт оборудования; $Q_{u.o}$ – стоимость штамповой оснастки; N – количество деталей, изготовляемых на данной оснастке.

В зависимости от сложности конфигурации и технологии изготовления в инструментальных штампах детали разбиты на шесть классов: коробчатые детали и окантовки, осесимметричные и детали простой пространственной формы, рифты, отбортовки, жесткости, детали сложной пространственной формы. Только детали класса отбортовки в инструментальных штампах изготавливаются за один переход, детали класса сложной пространственной формы — за 4 — 5 переходов, коробчатой формы — за 2 — 3 перехода, детали остальных классов — за 2 перехода.

Сложность рельефа детали определяет трудоём-кость изготовления, а соответственно и стоимость штамповой оснастки.

На основании проведённых расчетов были определены равнозначные (критические) программы, величины которых приведены в табл. 1. Из приведённых результатов расчетов просматривается следующая закономерность: с ростом габаритов увеличивается величина критической программы. Это объясняется тем, что с ростом габаритов стоимость штамповой оснастки в технологических процессах инструментальной штамповки возрастает быстрее, чем в процессах ударной штамповки в связи с тем, что для изготовления крупнога-

баритных деталей увеличивается количество переходов, для каждого из которых требуется отдельный комплект оснастки, а в ударной штамповке комплектность оснастки не изменяется. Этот факт сказывается не только на величине критической программы, но и на расходах материалов, на длительности проектирования, трудоемкости и стоимости изготовления.

Таблица 1 Значения равнозначных программ по величине технологической себестоимости, шт/год

Группы деталей по габаритам	Классы деталей							
	Коробчатые	Осесим-				Детали		
	детали	метрич-	Рифты	Отбортовки	Жесткости	сложной		
	и окантовки	ные				формы		
До 300 мм	3100	2800	2300	1300	2350	1920		
300 – 500 мм	3600	3500	2100	960	2150	2600		
Св. 500 мм	9000	5100	3300	1070	3360	7070		

Так, в среднем по всем классам и всем типоразмерам расходы материала на штамповую оснастку и затраты на него снизились в 3,2 раза, трудоемкость проектирования штамповой оснастки снизилась в 3,5 раза, а трудоемкость изготовления — в 3,7 раза.

Аналогичным образом изменились и затраты на проектирование и изготовление в среднем одного комплекта штамповой оснастки. Снижение полных затрат на комплект штамповой оснастки приведено в табл. 2

Таблица 2 Снижение полных затрат на комплект штамповой оснастки одного наименования, раз

Группы деталей по габаритам	Классы деталей							
	Коробчатые детали	Осесим- метрич-	Рифты	Отбортовки	Жесткости	Детали сложной		
	и окантовки	ные				формы		
До 300 мм	3,12	3,11	3,27	2,05	3,35	3,63		
300 – 500 мм	3,09	3,00	3,11	1,74	3,14	3,27		
Св. 500 мм	4,53	3,00	2,97	1,63	3,02	3,76		

Наименьшая кратность изменения полных затрат на комплект штамповой оснастки принадлежит «отбортовкам», что объясняется относительной простотой штамповой оснастки, наибольшая — «деталям сложной пространственной формы», что соответствует наибольшей относительной сложности.

Заключение

На основании приведённых расчётных данных можно сделать вывод, что экономически целесообразно применять ударную штамповку, когда изделия изготавливаются единично или малыми сериями

при значительной капиталоемкости производства и длительности производственного цикла.

Литература

1. Фролов Е.А. Научные основы пневмоударной штамповки сложнорельефных тонколистовых деталей: Диссертация... докт. техн. наук. – Краматорск: ДГМА, 2003. – 370 с.

Поступила в редакцию 15.10.2004

Рецензент: д-р техн. наук, проф. А.Я. Мовшович, ГП Харьковский научно-исследовательский институт технологии машиностроения, Харьков.