УДК 621.396

В.Г. КУЧМИЕВ, Н.В. ДОЦЕНКО, Е.Е. МАЛАФЕЕВ, И.В. ЧУМАЧЕНКО

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

ГРАФОВЫЕ МОДЕЛИ ОБЪЕКТОВ ДИАГНОСТИРОВАНИЯ

Статья посвящена развитию теории диагностических моделей. Исследованы свойства графовых диагностических моделей. Полученные результаты будут полезны при решении перечислительных задач, например, при построении типовых диагностических процедур и унификации типовых проектных решений.

графовая модель, диагностика, контроль, надежность, проектное решение, перечислительные задачи

Сокращение длительности простоев авиационной техники может быть достигнуто уменьшением времени определения работоспособности объектов авиационной оборудования и поиска места отказа в них. Эта проблема может быть решена путем разработки и внедрения в эксплуатацию прогрессивных методов и средств контроля технического состояния [1]. Техническая диагностика позволяет эффективно решать многие задачи в сфере производства и эксплуатации сложных систем. Получаемая информация с помощью средств технической диагностики об исправности устройств, месте и причинах отказов позволяет установить прямые и обратные связи управления качеством и надежностью эксплуатируемой системы. Одной из мер поддержания необходимого уровня надежности дискретных систем является проверка и диагностика технического состояния системы.

Задача выбора необходимого множества тестовых входных воздействий является одной из задач кибернетики [2]. Ее решение связано с построением модели исследуемой системы. Получение такой модели системы связано с построением специального математического описания, необходимого для диагностических рассмотрений [3].

Математической моделью объекта диагностирования называется формальное описание объекта диагностирования и его поведения во всех технических состояниях. Явная модель объекта техническо-

го диагностирования включает в себя совокупность формальных описаний всех необходимых технических состояний объекта [4].

Формальное описание может быть представлено в аналитической, табличной, векторной, графической или другой форме и задано в явном или неявном виде. Наиболее распространенной формой представления диагностических моделей является табличная форма диагностической модели, так называемая матрица неисправностей [5]. Табличная модель представляет собой прямоугольную таблицу (табл.1), в строках которой - соответствующие допустимые элементарные проверки, т.е. признаки рів контрольных точках объекта, а в столбцах - технические состояния аі объекта в множестве А.

Таблица 1 Форма диагностической модели

P/A	a_1	a ₂	a_k
p_1	R ₁₁	R ₁₂	R_{1k}
p_2	R ₂₁	R ₂₂	R _{2k}
•••	•••	•••	 •••
p _n	R _{n1}	R _{n2}	R_{nk}

В клетке таблицы, расположенной на пересечении строки p_i и столбца a_i , проставляются результаты элементарной проверки p_i объекта, который находится в состоянии a_j . Если при проверке признака p_i последний - в допуске для объекта, который находится в состоянии a_i , то результату проверки

присваивается $R_{ij} = 0$. Если признак p_i находится не в допуске, то $R_{ij} = 1$.

Данная форма удобна для программирования и достаточно наглядна, однако при решении ряда задач, например, перечисления типовых диагностических моделей, возникают определенные проблемы, связанные с комбинаторной природой рассматриваемой проблемы. В этом случае целесообразно применять графовые модели, для которых разработаны более эффективные методы преобразований.

Целью настоящей работы является исследование графовых моделей объектов диагностирования и их свойств.

Пусть п – количество элементарных проверок,

k – количество состояний объекта диагностирования,

 $P = \{p_1, p_2, ..., p_n\}$ - множество проверок,

 $A = \{a_1, a_2, ..., a_k\}$ - множество состояний объекта диагностирования,

 $A^{i} = \{a^{i}_{1}, a^{i}_{2}, ..., a^{i}_{k}\}$ - множество состояний объекта диагностирования, обнаруживаемых і—ой проверкой; $Ai \notin Aj$; i = 1...n, j = 1...n, $i \neq j$.

 $R = \{R_{11}, ..., R_{nk}\}$ – множество реакций объекта диагностирования на соответствующие проверки, тогда математическая модель объекта диагностирования может быть представлена в виде двудольного графа (биграфа, 2 - раскрашиваемого графа).

В общем случае двудольный граф - это граф G, множество вершин которого V можно разбить на два подмножества V1 и V2 таким образом, что каждое ребро графа G соединяет вершины из разных множеств. Применительно к диагностическим моделям будем полагать, что первое подмножество вершин соответствует множеству проверок P (на рисунках обозначены белым цветом), а второе подмножество соответствует множеству состояний объекта диагностирования A (на рисунках обозначены черным цветом). Ребро графа (i,j), соединяющее вершину i из первого подмножества и вершину j из

второго подмножества существует, если $R_{ij}=1$. Граф, который является графовой моделью объекта диагностирования будем обозначать "М" или "М(n,k)" и, для краткости дальнейшего изложения, называть М-графом. На рис. 1 приведен пример табличной модели и соответствующего ей М-графа.

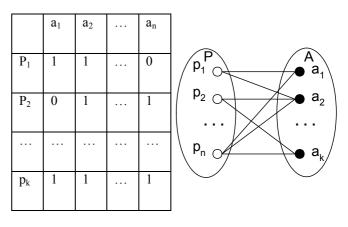


Рис. 1. Табличная и графовая модели

М-граф, соответствующий і-ой элементарной проверке будем обозначать M^o_i .

Рассмотрим свойства М-графов.

1. М-граф может быть представлен в виде объединения М-графов элементарных проверок, т.е. $M = M^o_1 \cup M^o_2 \cup ... \cup M^o_n$. На рис. 2 приведен пример объединения M^o -графов.

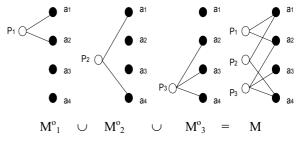


Рис. 2. Объединение M^o-графов

 $2. \ k > \deg (p_i) > 0$, где $\deg (p_i)$ – степень вершины p_i . Вершины подмножества проверок, имеющие степень 0 или k и соответствующие им проверки не информативны при построении диагностических тестов.

Таблица 2
Примеры изоморфных М-графов

	Исход-	Преобразования		
Вид диагн. модели	ная	проверок	состояний	проверок
	модель			и состоя-
				ний
Табличная	0010	0010	0010	0001
	0101	0111	1001	0111
	1011	1011	1110	1011
	0111	0101	1011	0110
Графовая				

- 3. $\deg (a_j) > 0$, где $\deg (a_j)$ степень вершины a_j . Вершины из множества A, имеющие степень 0 соответствуют не обнаруживаемым состояниям объекта диагностирования.
- 4. $\deg (p_1) + \ldots + \deg (p_n) = \deg (a_1) + \ldots + \deg (a_k)$. Это свойство вытекает из свойств ребер двудольного графа, которые связывают вершины из двух подмножеств.
- 5. Минимальное количество ребер M(n,k)-графа g_{min} определяется следующим образом:

$$g_{min} = max (n, k).$$

Поскольку $\deg (p_i) > 0$, $\deg (a_j) > 0$, то возможны два граничных случая: при n < k, $g_{min} = k$, а при n > k, $g_{min} = n$.

- 6. Верхняя граница максимального количества ребер M(n,k)-графа g_{max} определяется следующим образом: $Lt > g_{max}$, где Lt оценка Турана [6]. Применительно к M-графам $Lt = [(n+k)^2/4]$.
- 7. Диагностические модели, полученные в результате изменения номеров проверок и (или) номеров состояний эквивалентны относительно указанной группы преобразований [6], а соответствующие им М-графы изоморфны. В таблице 2 приведены примеры изоморфных М-графов.

Выводы

В данной работе рассмотрены графовые модели объектов диагностирования, показана их связь с табличными формами и исследованы свойства Мграфов. Полученные результаты будут полезны при решении перечислительных задач, например построения типовых диагностических процедур и унификации типовых проектных решений.

Литература

- 1. Диагностирование и прогнозирование технического состояния авиационного оборудования/В.Г.Воробьев, Ю.В.Глухов, Ю.В.Козлов и др. Под ред. И.М.Синдеева. М.Транспорт,1984.-191 с.
- 2. Техническая эксплуатация авиационного оборудования/ В.Г. Воробьев, В.Д. Константинов, В.Г.Денисов и др.; Под ред. В.Г. Воробьева. М.Транспорт, 1990 296с.
- 3. Дмитриев А.К., Мальцев П.А. Основы теории построения и контроля сложных систем.-Л.: Энергоатомиздат. Ленингр. Отделение, 1988.-
- 4. Аржененко А.Ю., Чугаев Б.Н.. Оптимальные бинарные вопросники.-М.: Энергоатомиздат, 1989.-128с.
- 5. Ксенз С.П. Диагностика и ремонтопригодность радиоэлектронных средств.-М.:Радио и связь, 1989. 248 с.
- 6. Жихарев В.Я., Шилова Т.В., Доценко Н.В. Эквивалентность диагностических моделей // Открытые информационные и компьютерные интегрированные технологии. Харьков: «ХАИ» «Торнадо», 2002. N 11. C. 92-96.

Поступила в редакцию 15.09.03

Рецензент: д.т.н., проф. Кононенко И.В, Национальный технический университет «Харьковский политехнический институт»