УДК 65.011.3

СИСТЕМНОЕ УПРАВЛЕНИЕ ПРОЦЕССОМ СОЗДАНИЯ НОВОЙ ТЕХНИКИ С УЧЕТОМ РИСКОВ НЕКОМПЕТЕНТНОСТИ

В.П. Божко, д-р техн. наук, Ю.Ю. Гусева

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г Харьков, Украина

Предложен механизм распознавания факторов, вызывающих несоответствие значений характеристик объекта техники, полученных в результате проектирования, заданным. В качестве таких факторов рассматриваются ошибочные конструкторские и технологические решения, принимаемые в процессе создания новой техники.

* * *

Запропоновано механізм розпізнавання факторів, що викликають невідповідність значень характеристик об'єкта техніки, отриманих у результаті проектування, заданим. Як такі фактори розглядаються помилкові конструкторські й технологічні рішення, прийняті в процесі створення нової техніки.

* * *

Recognition's mechanism of factors, which call discrepancy of characteristics' values of technical object, obtained as a result of designing, given ones, is offered. Wrong design and technological decisions, which are taken during the creation's process of new item, are examined as such factors.

Постановка проблемы и ее связь с практическими задачами

Существует мнение, что хорошо спроектированная, хорошо изготовленная, детально испытанная и правильно эксплуатируемая техника не должна отказывать в работе [1]. Вместе с тем отказы и дефекты все же возникают при испытаниях и эксплуатации любых технических устройств. Детальный анализ подобных неисправностей показывает, что их возникновение вызывают следующие факторы [2]:

- 1) грубые ошибки, допущенные в принципиальных схемах или конструкции устройств и в технологических режимах обработки; ошибки, связанные с несоблюдением требований конструкторской и технологической документации при изготовлении, применением некондиционных материалов и элементов, слабым контролем качества изделий в процессе производства;
- 2) нарушение условий работы, на которые данное устройство рассчитано, несоблюдение оговоренных в технической документации правил эксплуатации;
- 3) конструкторские и технологические ошибки, выявление, предупреждение и устранение которых требуют глубокого знания физико-химических про-

цессов в материалах, элементах и схемах устройств, изучения зависимости этих процессов от воздействующих на них факторов.

Следует отметить, что во всех перечисленных выше случаях имеет место риск некомпетентности исполнителя. Поскольку организация-разработчик не несет ответственности за неправильную эксплуатацию объекта техники, основное внимание следует уделять внутренним факторам, относящимся к конструкторским и технологическим решениям, принимаемым в течение технической подготовки производства (ТПП).

Ошибки, возникающие при проектировании объектов техники и технологии их производства, вызывают ряд негативных последствий: во-первых, увеличивается длительность выполнения проекта за счет времени, необходимого для исправления дефектов; во-вторых, увеличиваются финансовые затраты на проект, и, наконец, в-третьих, дефекты, вызванные такими ошибками, могут проявляться лишь в эксплуатации, что значительно снижает имидж фирмы-разработчика. Особое значение в последнем случае имеет то, что при работе со сложной, в частности авиационной техникой, подобные дефекты могут создавать опасность для жизни лю-

дей. Следовательно, проблема снижения количества конструкторских и технологических ошибок является актуальной в свете возможности повысить таким образом конкурентоспособность проектируемого изделия и уменьшить затраты ресурсов на выполнение проекта.

Анализ последних исследований и выделение нерешенных ранее частей проблемы

При том, что существуют методики как по проектированию техники и технологии, так и по организации процесса проектирования, ни те, ни другие не учитывают риска принятия неверного технического решения. Предлагая способы и приемы проектирования, они не принимают во внимание субъективность лица, принимающего решение. Анализ возможных дефектов и вызывающих их ошибок позволил бы не только выбрать из множества рекомендуемых мероприятий по повышению надежности объекта техники те, которые необходимы в данном конкретном случае, но и оценить научнотехнический потенциал организации через призму риска принятия ошибочных решений (некомпетентности). Риск некомпетентности можно оценить величиной потерь времени на доводку изделий по соответствующим показателям. В общем виде его можно рассчитать по формуле

$$R = \frac{T_{\Lambda}}{T_{KII}} \quad , \tag{1}$$

где ${\rm T_{_{\rm J}}}$ – длительность доводочных работ; ${\rm T_{_{\rm ЖU}}}$ – длительность жизненного цикла объекта техники.

Подобная задача рассматривалась нами в работах [3-4], однако ранее мы анализировали факторы риска возникновения дефекта (отклонения фактического значения технической характеристики объекта от заданного) без методологической основы их определения.

Постановка задачи

Поэтому целью данной работы является обоснование механизма выделения факторов (ошибок),

вызывающих появление дефектов. В качестве приема для реализации поставленной цели нами был выбран системный подход [5].

Методика исследований

Системы обычно изображаются с помощью диаграмм потоков или в виде блок-схем. В общем виде элементарная система может быть изображена так (рис. 1):

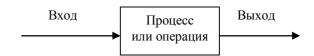


Рис. 1. Общий вид элементарной системы

Поскольку назначением рассматриваемой нами системы является процесс ТПП, ее можно представить следующим образом:

Рис. 2. Система ТПП

Входом такой системы являются параметры и характеристики, определяемые техническим заданием (ТЗ), выходом — полученные в результате проектирования реальные технические характеристики (ТХ) объекта техники. Компонентами, за счет которых осуществляется процесс проектирования, являются принимаемые конструкторские и технологические решения.

Методология системного анализа предполагает, что изучаемая система разбивается на подсистемы до тех пор, пока не достигнут уровень ее основных компонент. В идеальном случае на этой стадии мы получили бы возможность «установить с достаточной точностью, что произойдет с каждым возможным входом на любом этапе его прохождения через систему, или описать каждую ответную реакцию системы»*

^{*} Harry H. Goode and Robert E. Machol. System Engineering, N. Y., Mc Graw-Hill Book Co., 1957. P. 305.

Таким образом, систему, изображенную на рис. 2, можно разбить на подсистемы. Поскольку проектирование ведется по отдельным деталям и узлам изделия, а на выходе мы должны получить объект техники, обладающий заданными техническими характеристиками (функциями), для решения этой задачи возможно и целесообразно применение функционально-структурного подхода [6].

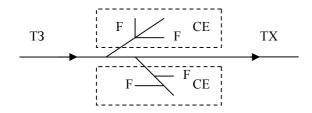


Рис. 3. Функционально-структурный подход к анализу процесса ТПП

На рис. З показано, что каждая техническая характеристика (функция объекта проектирования) ТХ обеспечивается комплексами конструкторских и технологических решений F по отдельным структурным единицам изделия СЕ. При принятии каждого из решений, входящих в эти комплексы, возможны ошибки, результатом которых будет необеспечение соответствующей технической характеристики. Таким образом, риск, сопутствующий принятию решений, является фактором, определяющим возникновение дефектов.

Имея полную модель, представляющую в графической форме место каждой части системы, можно сосредоточиться на анализе самых мелких частей системы и при этом сохранить связь частей и целого. После завершения анализа системы выполняется ее синтез. Система может принять вид, показанный на рис. 4.

Основную систему при использовании механизма применения доводочных работ можно изобразить в виде, показанном на рис. 5. Система, запускающая процесс доводки, состоит из четырех элементов: выхода основной системы (1), устройства, оценивающего этот выход (2) и передающего результат по каналу обратной связи (3) в блок принятия решения

о доводке (X), сравнивающий фактический и ожидаемый выход. Если отклонение недопустимо, воздействующий механизм (4) дает команду о проведении доводочных работ.

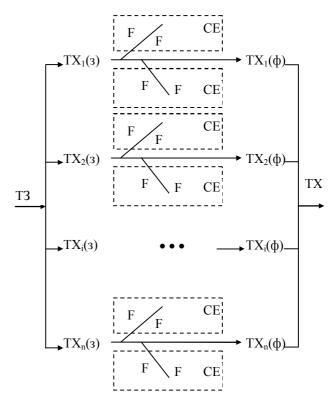


Рис. 4. Синтез системы проектирования

TXi(3) — значение і-й технической характеристики по $T3; TXi(\Phi)$ — фактическое значение і-й технической характеристике по результатам проектирования

Рис. 5. Система ТПП при использовании доводочных работ

Процесс управления мероприятиями по устранению некомпетентных решений можно представить как последовательность семи этапов:

- 1. Определение целей системы (целью системы технической подготовки производства является получение заданных характеристик изделия).
- 2. Выявление проблем в процессе достижения цели (возможных дефектов как фактов несоот-

ветствия фактических характеристик изделия заданным в Т3).

- 3. Исследование проблемы и постановка диагноза. Корректирующие действия нельзя выполнить, пока не будут выявлены все специфические факторы, поэтому необходим анализ причин, из-за которых не были достигнуты поставленные цели, выделение ошибочных решений, приводящих к возникновению дефектов. Основой для анализа проблемы могут послужить следующие соображения [5]: первоначальный план действий был неудовлетворительным; план действий был хорошим, но его воплощение оказалось неудовлетворительным; события как внешней, так и внутренней среды могли коренным образом измениться так, что текущая программа действий не отвечает новым требованиям.
- 4. Поиск решения проблемы. Поиск ответных мер определяется причинными факторами. Можно выделить четыре вида реакции организации, используемые при возникновении отрицательных результатов [5]:
- устранение причины;
- изменение характеристик причины;
- нахождение лучшего способа приспособления к среде;
- уход из данной ситуации.
- 5. Оценка альтернатив и выбор наилучшей из них.
 - 6. Приведение решения в действие.
 - 7. Проверка эффективности решения.

Выводы и перспективы дальнейших исследований

Предложен механизм распознавания факторов, вызывающих появление дефектов как фактов несоответствия реальных значений характеристик объекта техники заданным. В качестве таких факторов рассматриваются ошибочные конструкторские и технологические решения, принимаемые в процессе

проектирования техники и технологического процесса ее производства. Подобная методика может использоваться в процессе управления мероприятиями по сокращению количества ошибочных решений и времени на доводку проекта (на этапе исследования проблемы и постановки диагноза).

В дальнейшем предполагается продолжить разработку методик анализа факторов риска возникновения дефектов и поиска оптимального решения в процессе управления такими факторами.

Литература

- 1. Меламедов И.М. Физические основы надежности. Л.: Энергия, 1970. 151 с.
- 2. Комаров А.А. Надежность гидравлических систем. М.: Машиностроение, 1969. 236 с.
- 3. Гусева Ю.Ю. Модель управления длительностью технической подготовки производства авиационной техники // Авиационно-космическая техника и технология. X., 2002. Вып. 34. C. 237-239.
- 4. Гусева Ю.Ю. Управление длительностью доводки авиационных агрегатов. // Вестник двигателестроения. Запорожье, 2002. №1. С. 107-109.
- 5. Янг. С. Системное управление организацией // Пер. с англ; под ред. С.П. Никанорова. М.: Сов. радио, 1972. 456 с.
- 6. Моисеева Н.К. Функционально-стоимостной анализ в машиностроении. -М.: Машиностроение, 1987. 320 с.

Поступила в редакцию 24.03.03

Рецензенты: канд. техн. наук, доцент Чигрин В.С., Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков; д-р техн. наук, профессор Ведь В.Е., Национальный технический университет «ХПИ», г. Харьков